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Abstract

This paper studies the optimal growth of a developing non-renewable nat-
ural resource producer, which extracts the resource from its soil, and pro-
duces a single consumption good with man-made capital. Moreover, it can
sell the extracted resource abroad and use the revenues to buy an imported
good, which is a perfect substitute of the domestic consumption good. The
domestic technology is convex-concave, so that the economy may be locked
into a poverty trap. We study the optimal extraction and depletion of the
exhaustible resource, and the optimal paths of accumulation of capital and
of domestic consumption. We show that the extent to which the country
will optimally escape from the poverty trap and the exhaustible resource
will be a blessing and not a curse depends on the characteristics of its tech-
nology and of the revenues from the resource function, on its impatience,
on the level of its initial stock of capital, and on the abundance of the
natural resource. If the net marginal productivity of capital at the origin
is greater than the social discount rate, the country will accumulate cap-
ital along the entire growth path, and will escape from the poverty trap,
whatever its initial stocks of capital and resource, and provided that the
marginal revenue obtained from the exportation of the resource is finite at
the origin. In this case, the resource is a blessing. On the contrary, if the
net marginal productivity of capital is negative whatever the level of capi-
tal, that is to say if the gross marginal productivity is always less than the
depreciation rate, and if moreover the initial stock of capital is small, then
the country will never accumulate; it will consume the revenues obtained
from selling abroad the extracted resource, until there is no resource left
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and the economy collapses. We show that in this case the resource can be
a curse, in the sense that the economy can be worse-off with the resource
than without it: without the resource, the economy would have collapsed
all the same, but it is possible that with the resource the economy col-
lapses faster. We also show that any optimal path may be decentralized
in a competitive equilibrium by using a tax/subsidy scheme for firms.

Keywords: optimal growth, exhaustible resource, poverty trap, natural
resource curse, competitive equilibrium with tax/subsidy.
JEL Classification: Q32, C61
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1 Introduction

The standard literature on growth and exhaustible resources, initiated by Das-
gupta and Heal [2] in the seventies, deals with developed economies, or a world
economy, relying on a non-renewable natural resource as a factor of production.
Capital and resource are imperfect substitutes in the production process. The
resource input is necessary in the sense that there is no production without
it. When the social planner adopts a social welfare function of the discounted
utilitarian type, the shadow price of the resource stock follows the Hotelling’s
rule, the resource is asymptotically depleted, and consumption asymptotically
vanishes.

The problematic of this paper is different. We are concerned here with a
developing non-renewable natural resource producer –an oil producing country
for instance–, which extracts the resource from its soil in its primary sector, and
produces a single consumption good with man-made capital in its secondary
sector. Moreover, it can sell the extracted resource abroad1. The revenues
are then used to buy an imported good, which is a perfect substitute of the
domestic consumption good. The resource is unnecessary in the preceeding
sense: domestic production is possible without it.

The first question we want to address is the following: Can the ownership
of non-renewable natural resources allow a poor country to make the transition
out of a poverty trap? We suppose that the production function is convex for
low levels of capital and concave for high levels. The conditions of occurrence
of a poverty trap are then fulfilled (Dechert and Nishimura [3], Azariadis and
Stachurski [1]): the country, if initially poor, may be unable to pass beyond
the trap level of capital, that is to say to develop. But the country can also
extract its resource, sell it abroad, and use the revenues to import the good.
The natural resource is a source of income, which, together with the income
coming from domestic production, can be used to consume, or to accumulate
capital. The idea is that a poor country with abundant natural resources could
extract and sell an amount of resource which would enable it to accumulate a
stock of capital sufficient to overcome the weakness of its initial stock. We want
to know on what circumstances would such a scenario optimally occur.

Our work is also linked to the literature on the natural resources curse (see
for instance Sachs and Warner [8], and Gylfason et al. [5]), and the second aim
of this paper is the reexamination of this question. The natural resource curse
is the fact that an abundance of natural resources tends to hamper economic

1In the same spirit, Eliasson and Turnowsky [4] study the growth of a small economy

exporting a renewable resource to import consumption goods, with a reference to fish for

Iceland, or forestry products for New-Zealand.

3



growth. Intuitively, natural resources should be a blessing, and it sometimes is.
But there are numerous empirical examples that show that it is not always the
case, and that countries rich in natural resources have low growth rates. Several
theoretical explanations of this fact are proposed in the literature. Among
those, the more prevalent are corruption, inefficient public governance and bad
institutional quality induced by the easy profits obtained in the natural resource
sector, conflicts provoked by the fight for a greater slice of the cake, disincentives
to invest due to a false sense of security, over-appreciation of the real exchange
rate (the Dutch disease). We do not intend here to address all these questions.
We just wonder whether the resource-abundant economy is better or worse-
off than the same economy (same technology, same impatience, same initial
capital stock) without natural resource. If the resource allows the country to
escape from a poverty trap in which it would have remained without it, then
the resource is clearly a blessing. But it is intuitively possible that the resource-
abundant country uses the revenues coming from the extraction to consume as
long as possible, and then lets the economy collapse in the long run, instead of
accumulating capital from the beginning, in order to rely on man-made capital
when natural capital is exhausted. If such a scenario is optimal, then the
resource is a curse. The resource can also be a curse if the economy collapses
in the long run with it as well as without it, but faster with it.

We study in this paper the optimal extraction and depletion of the ex-
haustible resource, and the optimal paths of accumulation of capital and of
domestic consumption. We take into account the characteristics of the domes-
tic technology, the shape of the foreign demand for the exhaustible resource,
and of course the initial abundance of the resource and the initial level of de-
velopment of the country.

We show that the extent to which the country will optimally escape from
the poverty trap and the exhaustible resource will be a blessing and not a curse
depends on the characteristics of its technology and of the revenues from the
resource function, on its impatience, on the level of its initial stock of capital,
and on the abundance of natural resource. The technology is convex-concave, so
a poverty trap exists. If the net marginal productivity of capital at the origin is
greater than the social discount rate, the country will accumulate capital along
the entire growth path, and will escape from the poverty trap, whatever its
initial stocks of capital and resource, and provided that the marginal revenue
obtained from the exportation of the resource is finite at the origin. In this case,
the resource is a blessing. On the contrary, if the net marginal productivity of
capital is negative whatever the level of capital, that is to say if the gross
marginal productivity is always less than the depreciation rate, and if moreover
the initial stock of capital is small, then the country will never accumulate; it
will consume the revenues obtained from selling abroad the extracted resource,
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until there is no resource left and the economy collapses. We show that in
this case the resource can be a curse, in the sense that the economy can be
worse-off with the resource than without it: without the resource, the economy
would have collapsed all the same (cf. the standard Ramsey model with a
convex-concave production function), but it is possible that with the resource
the economy collapses faster.

Finally, we show that any optimal path may be decentralized in a com-
petitive equilibrium. Due to the existence of increasing returns in production
for low levels of capital, it is necessary to introduce a tax/subsidy scheme to
ensure that the competitive equilibrium exists. This scheme is based upon the
difference between the values of the input and output.

The remaining of the paper is organized as follows. Section 2 presents the
model. Section 3 gives the properties of the optimal growth paths. We prove
in section 4 the existence of a competitive equilibrium. Section 5 provides a
summary of the main results and concludes.

2 The model

We consider a country which possesses a stock of a non-renewable natural re-
source S. This resource is extracted at a rate Rt, and then sold abroad at a
price Pt, in terms of the numeraire, which is the domestic single consumption
good. The inverse demand function for the resource is P (Rt). The revenue
from the sale of the natural resource, φ(Rt) = P (Rt)Rt, is used to buy a foreign
good, which is supposed to be a perfect substitute of the domestic good, used
for consumption and capital accumulation. The domestic production function
is F (kt), supposed to be convex for low levels of capital and then concave. The
depreciation rate is δ. We define the function f(kt) = F (kt) + (1− δ)kt, and we
shall, in the following, name it for simplicity the production function. We are
interested in the optimal growth of this country which, if its initial capital is
low, can be locked into a poverty trap (Dechert and Nishimura [3]). Will the
revenues coming from the extraction of the natural resource allow it to escape
from the poverty trap? Or, on the contrary, will the existence of the natural
resource, which allows the country to consume without producing, destroy any
incentive to accumulate?

Formally, we have to solve problem (P)

max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)
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under the constraints

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0,

ct + kt+1 ≤ f(kt) + φ(Rt),
+∞∑
t=0

Rt ≤ S,

S > 0, k0 ≥ 0 are given.

We denote by Z(k0, S) the Value-function of Problem (P). We make the fol-
lowing assumptions:
H1 The utility function u is strictly concave, strictly increasing, continuously
differentiable in R+, and satisfies u(0) = 0, u′(0) = +∞.
H2 The production function f is continuously differentiable in R+, strictly
increasing, strictly convex from 0 to kI , strictly concave for k ≥ kI , and
f ′(+∞) < 1. Moreover, it satisfies f(0) = 0.
H3 The revenue function φ is continuously differentiable, concave, strictly in-
creasing from 0 to R̂ ≤ +∞, and strictly decreasing for R > R̂. It also satisfies
φ(0) = 0.

Throughout this paper, an infinite sequence (xt)t=0,...,+∞ will be denoted by
x. An optimal solution to Problem (P) will be denoted by (c∗,k∗,R∗). We say
that the sequences c, k, R are feasible from k0 if they satisfy the constraints:

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0

ct + kt+1 ≤ f(kt) + φ(Rt),
+∞∑
t=0

Rt ≤ S, and k0 is given.

Let Ω(k0, S) denote the set of (k, R) feasible from k0 and S, i.e.,

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt), 0 ≤ Rt

+∞∑
t=0

Rt ≤ S, k0 ≥ 0 is given.

We first list some preliminary results necessary for the main results of our paper.

Lemma 1 The Value-function Z is continuous in k0, given S.

Proof : We first prove that the correspondence Ω is compact-valued and con-
tinuous in k0, for the product topology, given S.

To prove that Ω(k0, S) is compact, take a sequence {kn ,Rn} which con-
verges to {k ,R} for the product topology. First, observe that for any feasible
k we have

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt) ≤ f(kt) + max{φ(R̂), φ(S)}.
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Therefore, k will be in a compact set for the product topology (see e.g. Le Van
and Dana [6]). Second,

∀n,∀t, 0 ≤ kn
t+1 ≤ f(kn

t ) + φ(Rn
t ),

hence, by taking the limits we get

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt).

We have proved that the set of feasible k is closed for the product topology. It
is obvious that the set of feasible R belongs to a fixed compact set. To prove

that this set is closed, observe that ∀N,∀n
N∑

t=0
Rn

t ≤ S. Taking the limit we get

∀N,∀n
N∑

t=0
Rt ≤ S. That implies

+∞∑
t=0

Rt ≤ S. Summing up, we have proved that

Ω(k0, S) is compact.
It is easy to check that Ω is upper hemi-continuous in k0. It is less easy

for the lower hemi-continuity of Ω. We will prove that, actually, Ω is lower
hemi-continuous. Let kn

0 → k0 as n goes to +∞ and (k, R) ∈ Ω(k0, S). We
have to show there exists a subsequence still denoted by (kn, Rn), for short,
which converges to (k, R) and satisfies (kn, Rn) ∈ Ω(kn

0 , S),∀n. We have three
cases.
Case 1 :

0 ≤ kt+1 < f(kt) + φ(R0), ∀t < T − 1

0 ≤ kt ≤ f(kt−1) + φ(Rt−1), ∀t ≥ T.

There exists N such that for any n ≥ N , we have k1 < f(kn
0 ) + φ(R0). Define,

for any n ≥ N , any t, kn
t = kt, Rn

t = Rt and the proof is done.
Case 2 :

kt+1 = f(kt) + φ(Rt), ∀t ≤ T − 1,

kT+1 < f(kT ) + φ(RT ),

kt+1 ≤ f(kt) + φ(Rt), ∀t ≥ T + 1.

Define, for t = 0, ..., T − 1 and for any n, kn
t+1 = f(kn

t ) + φ(Rt). Obviously,
kn

t → kt for t = 0, ..., T − 1. Hence, there exists N such that for any n ≥ N ,
kT+1 < f(kn

T ) + φ(RT ). The sequences (kn
0 , k

n
1 , ..., k

n
T , kT+1, kT+2, ...) and Rn

=R, for every n, satisfy the required conditions.
Case 3 :

∀t, kt+1 = f(kt) + φ(Rt).

It suffices to take kn
t+1 = f(kn

t ) + φ(Rt) for every t, every n.
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The second step is to prove that the intertemporal utility function is con-
tinuous on the feasible set for the product topology. But the proof is standard
(see e.g. Le Van and Dana [6]).

The third step is to apply the Maximum Theorem to conclude that Z is
continuous in k0.

Lemma 2 There exists a constant A which depends on k0, R̂, and S, such that
for any feasible sequence (c,k,R), we have ∀t, 0 ≤ ct ≤ A, 0 ≤ kt ≤ A.

Moreover, Problem (P) has an optimal solution. If kI = 0, then the solution
is unique.

Proof : It is obvious that Rt ≤ S, ∀t. Now, if R̂ < +∞ then for any t, we
have ct + kt+1 ≤ f(kt) + φ(R̂). And if R̂ = +∞ then for all t, ct + kt+1 ≤
f(kt) + φ(S). Since f ′(+∞) < 1, from Le Van and Dana [6], page 17, there
exists a constant A which depends on k0, R̂ (if R̂ < +∞) or on k0, S such that
∀t, 0 ≤ ct ≤ A, 0 ≤ kt ≤ A.

We have already proved that the set of feasible sequences is compact for the
product topology and the intertemporal utility function is continuous on the
feasible set for the same topology. Hence, there exists a solution to Problem
(P). When kI equals 0, because of the strict concavity of the technology and
the utility function u, the solution will be unique.

3 Properties of the optimal paths

We now study the properties of the optimal paths.
In the following, the superscript ∗ denotes the optimal value of the variables.
Proposition 1 states that along the optimal path consumption is always

strictly positive and the extraction always less than R̂, the maximum of the
revenue function; moreover, if the marginal revenue is infinite when the extrac-
tion becomes very small, the resource will not be exhausted in finite time.

Proposition 1 For any t, c∗t > 0 and R∗t < R̂. If φ′(0) = +∞, then R∗t > 0
for all t. Obviously, R∗t → 0 as t→ +∞.

Proof : Let V denote the Value-function. Observe that V (k0) > 0 for any
k0 ≥ 0, since the sequence c defined by c0 = f(k0) + φ(S) and ct = 0 for any
t > 0 is feasible. Hence V (k0) ≥ u(c0) > 0. That implies c∗t > 0,∀t, by the
Inada condition u′(0) = +∞.

Let us prove that R∗t < R̂ for all t. If R̂ = +∞, the proof is obvious.
So, assume R̂ < +∞. We cannot have R∗t > R̂ for some t, since u is strictly
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increasing and φ is strictly decreasing for R > R̂. We cannot have R∗t = R̂

for all t since
+∞∑
t=0

R∗t = S. If there exists T with R∗T = R̂, we can suppose

R∗T+1 < R̂. Without loss of generality, take T = 0. So

c∗0 + k∗1 = f(k0) + φ(R̂)

c∗1 + k∗2 = f(k∗1) + φ(R∗1), with R∗1 < R̂.

Choose ε > 0 small enough such that R∗1 + ε < R̂ and R̂− ε > 0. Let

c0 + k∗1 = f(k0) + φ(R̂− ε)

c1 + k∗2 = f(k∗1) + φ(R∗1 + ε)

and ct = c∗t , ∀t ≥ 2.

Let 4ε =
+∞∑
t=0

βtu(ct)−
+∞∑
t=0

βtu(c∗t ). We have

4ε = u(c0)− u(c∗0) + β[u(c1)− u(c∗1)]

≥ u′(c0)[φ′(R̂− ε)(−ε)] + βu′(c1)[φ′(R∗1 + ε)(ε)]

≥ ε[βu′(c1)φ′(R∗1 + ε)− u′(c0)φ′(R̂− ε)].

Let ε → 0. Then limε→04ε ≥ βu′(c∗1)φ
′(R∗1) > 0. Thus 4ε > 0 for ε small

enough. That is a contradiction to the optimality of c∗.
Now consider the case φ′(0) = +∞. First assume R∗t = 0, ∀t. Then let

c0 = f(k0)− k∗1 + S > c∗0

ct = f(k∗t )− k∗t+1 = c∗t , for t ≥ 1.

Then
+∞∑
t=0

u(ct) >
+∞∑
t=0

u(c∗t ): a contradiction. Hence if R∗T = 0 we can assume

that R∗T+1 > 0. Without loss of generality, take T = 0. So

c∗0 = f(k0)− k∗1

c∗1 = f(k∗1)− k∗2 + φ(R∗1), with 0 < R∗1 < R̂.

Let ε ∈ (0, R∗1). Define

c0 = f(k0)− k∗1 + φ(ε)

c1 = f(k∗1)− k∗2 + φ(R∗1 − ε)

ct = c∗t , ∀t ≥ 2.

Then

4ε =
+∞∑
t=0

βtu(ct)−
+∞∑
t=0

βtu(c∗t )

= u(c0)− u(c∗0) + β[u(c1)− u(c∗1)]

≥ u′(c0)φ(ε) + βu′(c1)[φ(R∗1 − ε)− φ(R∗1)]

≥ [u′(c0)φ′(ε)− βu′(c1)φ′(R∗1 − ε)]ε.
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Notice that limε→0
4ε

ε = +∞ which implies 4ε > 0 for ε small enough: a
contradiction.

Proposition 2 gives the Euler conditions of our problem, in the case where
the marginal revenue at the origin is finite, which we will favor in the remaining
of the paper. Notice that in the case of an interior solution, equations (E1) and
(E2) allow us to obtain the Hotelling’s rule:

φ′(R∗t+1)
φ′(R∗t )

= f ′(k∗t+1).

Proposition 2 Let k0 ≥ 0. Assume φ′(0) < +∞. Then we have the following
Euler conditions:

(i) ∀t, f ′(k∗t+1) ≤
u′(c∗t )

βu′(c∗t+1)
(E1)

with equality if k∗t+1 > 0,

(ii) ∀t, ∀t′, βtu′(c∗t )φ
′(R∗t ) = βt′u′(c∗t′)φ

′(R∗t′), (E2)

if R∗t > 0, R∗t′ > 0, and

(iii) ∀t, ∀t′, βtu′(c∗t )φ
′(R∗t ) ≤ βt′u′(c∗t′)φ

′(R∗t′), (E2′)

if R∗t = 0, R∗t′ > 0.

Proof : (i) Given t, k∗t+1 solves :

max
y

[
u(f(k∗t ) + φ(R∗t )− y) + βu(f(y) + φ(R∗t+1)− k∗t+2)

]
s.t. 0 ≤ y ≤ f(k∗t ) + φ(R∗t )

0 ≤ y.

Since c∗t = f(k∗t ) + φ(R∗t )− k∗t+1 > 0, one easily gets (E1).
(ii) Since S > 0, there exists t with R∗t > 0. Fix some T such that there exists
t ≤ T with R∗t > 0. Then (R∗0, ..., R

∗
T ) solve

max
(R0,...,Rt)

T∑
t=0

βtu(f(k∗t ) + φ(Rt)− k∗t+1)

s.t.
T∑

t=0

Rt ≤ S −
+∞∑

τ=T+1

R∗τ

0 ≤ Rt,∀t = 0, ..., T

k∗t+1 − f(k∗t ) ≤ φ(Rt),∀t = 0, ..., T.

Since φ is concave and u is strictly concave, (R∗0, ..., R
∗
T ) will be the unique

solution. Moreover, since c∗t > 0 for every t, the third constraints system will
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not be binding. There exist therefore λ ≥ 0 and µt ≥ 0, t = 0, ..., T such that
(R∗0, ..., R

∗
T ) maximize

T∑
t=0

βtu(f(k∗t ) + φ(Rt)− k∗t+1)− λ

[
T∑

t=0

Rt − S +
+∞∑

τ=T+1

R∗τ

]
+

T∑
t=0

µtRt,

with µtR
∗
t = 0,∀t = 0, ..., T . One easily obtains (E2) and (E2′).

Proposition 3 shows that, even if the initial capital stock equals 0, if the
marginal productivity at the origin of the production function f is high enough,
then, thanks to the exhaustible resource, the country will accumulate from some
date on. More precisely, the marginal productivity at the origin of the initial
production function F must be larger than the depreciation rate δ.

Proposition 3 Let k0 ≥ 0. Assume φ′(0) < +∞. If f ′(0) > 1, then there
exists T ≥ 1 with k∗t > 0 for any t ≥ T .

Proof : Since f ′(0) > 1, we can choose ε > 0 such that f ′(0) > 1 + ε. Assume
that there exists an infinite sequence {k∗tν}ν such that k∗tν = 0, for any ν, and
hence correspondently R∗tν > 0. Because

∑+∞
t=o R

∗
t = S we have R∗tν −→ 0 as

ν −→ +∞. Since R∗tν −→ 0 and R∗tν−1 either equals 0 or converges to 0, there

exists T such that φ′(R∗
tν )

φ′(R∗
tν−1)

< 1 + ε if tν ≥ T . We can write down the optimal

consumptions at time tν and tν − 1 as follows:

c∗tν−1 = φ(R∗tν−1) + f(k∗tν−1)

c∗tν = φ(R∗tν )− k∗tν+1

Now, let us consider another feasible sequence {c} :

ctν−1 = φ(R∗tν−1) + f(k∗tν−1)− ε1 > 0

ctν = φ(R∗tν )− k∗tν+1 + f(ε1) > 0

and ct = c∗t for all t 6= tν and t 6= tν − 1
Let

4ε1 =
+∞∑
t=0

βtu(ct)−
+∞∑
t=0

βtu(c∗t ).

We have

4ε1 = βtν−1(u(ctν−1)− u(c∗tν−1)) + βtν [u(ctν )− u(c∗tν )]

≥ βtν−1u′(ctν−1)(−ε1) + βtνu′(ctν )f(ε1)

≥ βtνε1u
′(ctν )[

f(ε1)
ε1

− u′(ctν−1)
βu′(ctν )

].
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Notice that R∗tν > 0 and R∗tν−1 ≥ 0. Then from Euler equation we have, for
ν large enough

u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(R∗tν−1)

< 1 + ε.

Observe that

lim
ε1→0

[
f(ε1)
ε1

− u′(ctν−1)
βu′(ctν )

]
= f ′(0)−

u′(c∗tν−1)
βu′(c∗tν )

> f ′(0)− (1 + ε) > 0,

and we get a contradiction 4ε1 > 0, when ε1 > 0 is close to 0. So, there must
exist T ≥ 1 such that k∗t > 0 for all t ≥ T .

In Proposition 4, we show that thanks to the exhaustible resource, the
country will accumulate at any period, provided that the marginal productivity
at the origin of the initial production function F is larger than the sum of the
social discount rate and the depreciation rate, ρ+δ, with ρ = 1

β −1. Notice that
when the initial capital stock is equal to 0, the same economy without natural
resources never takes-off (Dechert and Nishimura [3]). So, when the technology
is “good” enough, the natural resource is a blessing allowing the economy to
escape from the poverty trap.

Proposition 4 Let k0 ≥ 0. Assume f ′(0) > 1
β . Then k∗t > 0 for any t ≥ 1.

Proof : Assume k∗1 = 0. Then we have

c∗0 = f(k0) + φ(R∗0)

c∗1 + k∗2 = φ(R∗1).

The following Euler conditions hold:

−u′(c∗0) + βu′(c∗1)f
′(0) ≤ 0

u′(c∗0)φ
′(R∗0)− βu′(c∗1)φ

′(R∗1) ≤ 0.

This implies

1 <
1
β
< f ′(0) ≤ u′(c∗0)

βu′(c∗1)
≤ φ′(R∗1)
φ′(R∗0)

.

¿From these inequalities, we get u′(c∗0) > u′(c∗1), φ
′(R∗1) > φ′(R∗0) or equiva-

lently, c∗1 > c∗0 and R∗0 > R∗1. A contradiction arises:

φ(R∗1) ≥ φ(R∗1)− k∗2 = c∗1 > c∗0 = f(k0) + φ(R∗0) ≥ φ(R∗0) > φ(R∗1).

Therefore, k∗1 > 0. By induction, k∗t > 0 for all t ≥ 1.
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We want to show now that the natural resource will be exhausted in finite
time if the marginal productivity at the origin of the production function is
high enough. Before proving that, let us introduce an intermediary step.

Consider Problem (Q)

U(k0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt),

k0 ≥ 0 is given.

Let ϕ denote the optimal correspondence of (Q), i.e., k1 ∈ ϕ(k0) iff we have
k1 ∈ [0, f(k0)] and

U(k0) = u(f(k0)− k1) + βU(k1)

= max{u(f(k0)− y) + βU(y) : y ∈ [0, f(k0)]}.

Next consider Problem (Qa) where a is a sequence of non-negative real numbers

which satisfies
+∞∑
t=0

at < +∞:

W (k0, (at)t≥0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt) + at,

k0 ≥ 0 is given.

Obviously, W (k0, 0) = U(k0), and W (k0, (at)t≥0) ≥ U(k0). We also have the
Bellman equation: for all k0,

W (k0, (at)t≥0) = max{u(f(k0)− y + a0) + βW (y, (at)t≥1) : y ∈ [0, f(k0) + a0]}.

Let ψ(., (at)t≥0) denote the optimal correspondence associated with (Qa), i.e.,
k1 ∈ ψ(k0, (at)t≥0) iff W (k0, (at)t≥0) = u(f(k0)−k1 +a0)+βW (k1, (at)t≥1) and
k1 ∈ [0, f(k0) + a0]. We have the following lemma.

Lemma 3 Let kn
0 → k0 and an → 0 in l∞ when n converges to infinity. If, for

any n, kn
1 ∈ ψ(kn

0 ,a
n) and kn

1 → k1 as n→ +∞, then k1 ∈ ϕ(k0).

13



Proof : We first prove that W (kn
0 ,a

n) → U(k0) as n→ +∞. We have:

∀n, W (kn
0 , (a

n
t )t≥0) ≥ U(kn

0 ),

hence
lim inf
n→+∞

W (kn
0 , (a

n
t )t≥0) ≥ lim

n→+∞
U(kn

0 ) = U(k0).

We now prove that lim sup
n→+∞

W (kn
0 , (a

n
t )t≥0) ≤ U(k0). Let α > 0. There exists

N such that, for any n ≥ N , we have f(kn
0 ) + an

0 ≤ f(k0) + α and kn
0 ≤ α.

Let k̄α be the largest value of k which satisfies f(k̄α) + α = k̄α. Using the
same argument as in Le Van and Dana [6], page 17, one can show that, for any
feasible sequences from kn

0 , cn, kn of (Qan), for any n ≥ N , any t, we have
cnt ≤ max{k̄α, k0 + α}, kn

t ≤ max{k̄α, k0 + α}. Let c∗n,k∗n be the optimal
sequences from kn

0 of Problem (Qan). Let ε > 0. There exists T such that

∀n, W (kn
0 , (a

n
t )t≥0) ≤

t=T∑
t=0

βtu(c∗nt ) + ε.

For t = 0, ...T , we can suppose that c∗nt → c̄t and k∗nt+1 → k̄t+1. Since for
t = 0, ...T , we have c∗nt + k∗nt+1 = f(k∗nt ) + an

t , we obtain c̄t + k̄t+1 = f(k̄t) for
t = 0, ..., T . Define c̄ = (c̄0, ..., c̄T , 0, 0, ..., 0, ...). We get

lim sup
n→+∞

W (kn
0 , (a

n
t )t≥0) ≤

t=T∑
t=0

βtu(c̄t) + ε =
t=+∞∑

t=0

βtu(c̄t) + ε ≤ U(k0) + ε.

This inequality holds for any ε > 0. We have proved lim sup
n→+∞

W (kn
0 ,a

n) ≤ U(k0).

Now, let kn
1 ∈ ψ(kn

0 ,a
n) and suppose kn

1 → k1 as n→ +∞. We have

W (kn
0 , (a

n)t≥0) = u(f(kn
0 )− kn

1 + an
0 ) + βW (kn

1 , (a
n)t≥1),

and kn
1 ∈ [0, f(kn

0 ) + an
0 ]. Taking the limits we get

U(k0) = u(f(k0)− k1) + βU(k1),

with k1 ∈ [0, f(k0)]. That proves k1 ∈ ϕ(k0).

Proposition 5 states that if the marginal revenue of the resource at the origin
is finite and the marginal productivity of capital greater than the depreciation
rate, then the stock of resource will be exhausted in finite time.

Proposition 5 Assume φ′(0) < +∞ and f ′(0) > 1. Then there exists T∞ such
that, for all t ≥ T∞, we have R∗t = 0.

14



Proof : From Proposition 3, there exists T such that ∀t ≥ T , k∗t > 0.
Step 1. We will show that there exists T ′ such that R∗T ′ = 0. If not, for any
t ≥ T we have the Euler conditions:

βu′(c∗t+1)f
′(k∗t+1) = u′(c∗t ), (1)

βu′(c∗t+1)φ
′(R∗t+1) = u′(c∗t )φ

′(R∗t ).

Hence

f ′(k∗t+1) =
u′(c∗t )

βu′(c∗t+1)
=
φ′(R∗t+1)
φ′(R∗t )

.

Since
φ′(R∗

t+1)

φ′(R∗
t )

→ 1, we have f ′(k∗t+1) → 1, as t→ +∞. Under our assumptions

there exists a unique k̂ which satisfies f ′(k̂) = 1. Thus k∗t+1 → k̂. In this case,
for t large enough, u′(c∗t+1) > u′(c∗t ) ⇔ c∗t > c∗t+1. The sequence c∗ converges
to c̄. If c̄ > 0, we have f ′(k̂) = 1

β : a contradiction. So, c̄ = 0. Since

∀t, c∗t+1 + k∗t+2 = f(k∗t+1) + φ(R∗t+1),

we have k̂ = f(k̂) with f ′(k̂) = 1, and that is impossible. Hence, there must be
T ′ with R∗T ′ = 0.
Step 2. Assume there exists three sequences (c∗tν )ν , (k∗tν )ν , (R∗tν )ν which satisfy

∀ν, c∗tν−1 + k∗tν = f(k∗tν−1)

c∗tν + k∗tν+1 = f(k∗tν ) + φ(R∗tν ), with R∗tν > 0.

Hence

∀ν, f ′(k∗tν ) =
u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(0)

< 1.

Therefore, ∀ν, k∗tν > k̂. Observe that there exists λ > 0 such that

∀ν, βtνu′(c∗tν )φ′(R∗tν ) = λ.

This implies c∗tν → 0 as ν → +∞. From Lemma 2, k∗tν ≤ A,∀ν. One can
suppose k∗tν → k̄ ≥ k̂ > 0 and k∗tν+1 → k = f(k̄). From Lemma 3, k ∈ ϕ(k̄).
This implies c∗tν → c̄ = f(k̄) − k = 0. But, since k̄ > 0, we must have c̄ > 0
(see Le Van and Dana [6]). This contradiction implies the existence of T∞ such
that for all t ≥ T∞, we have R∗t = 0.

Remark 1 When the function f is concave, the proof will be very short. In-

deed, from Le Van and Saglam [7], the sequence (βtu′(c∗t ))t satisfies
+∞∑
t=0

βtu′(c∗t ) <

+∞. Since there exists λ > 0 such that βtνu′(c∗tν )φ′(R∗tν ) = λ, we have

βtνu′(c∗tν ) → λ
φ′(0)

> 0. This excludes
+∞∑
t=0

βtu′(c∗t ) to be bounded from above.
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In the following corollary, we prove that, even the initial capital equals
0, thanks to the natural resource, the country may take-off if the marginal
productivity at the origin of the initial production function is larger than the
sum of the discount and depreciation rates. But, when this productivity is low,
the natural resource cannot prevent the economy to collapse in the long term.

Corollary 1 Let k0 ≥ 0. Assume φ′(0) < +∞.
(a) If f ′(0) > 1

β , then k∗t → ks where ks is defined by f ′(ks) = 1
β .

(b) If f is concave and 1 < f ′(0) ≤ 1
β , then k∗t → 0.

Proof : ¿From the previous proposition, we know that R∗t = 0 for t ≥ T∞.
The optimal sequence (k∗t )t≥T∞ solves problem (Q) with initial data k∗T∞ >

0. Assertion (a) follows from Dechert and Nishimura [3], while assertion (b)
follows, e.g., from Le Van and Dana [6].

We now show that the country may never accumulate in physical capital if
the marginal productivity is very low, and the initial capital stock is small.

Proposition 6 Assume φ′(0) < +∞ and f ′(kI) < 1.
(a) Let k0 ≥ 0. Then there exists T with k∗t = 0,∀t ≥ T .
(b) There exists ε > 0 such that, if k0 ≤ ε, then k∗t = 0,∀t.

Proof : (a) There must be t0 with R∗t0 > 0. We claim that R∗t > 0,∀t > t0.
Assume R∗t0+1 = 0. Then we have the Euler conditions

f ′(k∗t0+1) =
u′(c∗t0)

βu′(c∗t0+1)
≥ φ′(0)
φ′(R∗t0)

> 1,

which is impossible. Hence R∗t0+1 > 0. By induction, R∗t > 0,∀t > t0. Thus,
for t ≥ t0, we have the FOC:

f ′(k∗t+1) =
u′(c∗t )

βu′(c∗t+1)
=
φ′(R∗t+1)
φ′(R∗t )

, if k∗t+1 > 0.

If there exists an infinite sequence (k∗tν+1)ν with k∗tν+1 > 0,∀ν, then from the
previous FOC we have lim

ν→+∞
f ′(k∗tν+1) = 1: a contradiction since ∀ν, f ′(k∗tν+1) ≤

f ′(kI) < 1. Therefore, k∗t = 0 for any t large enough.
(b) Consider Problem (R):

S(k0, S) = max
+∞∑
t=0

βtu(ct)

under the constraints

0 ≤ c0 ≤ f(k0) + φ(R0)

∀t ≥ 1, 0 ≤ ct ≤ φ(Rt), 0 ≤ Rt

+∞∑
t=0

Rt ≤ S.
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We first prove the claim for k0 = 0. Let (R∗t , c
∗
t )t be the solution. We have

+∞∑
t=0

R∗t = S and c∗t = φ(R∗t ),∀t. There exists λ such that ∀t, βtu′(φ(R∗t ))φ
′(R∗t ) =

λ. Let (kt, Rt)t be a solution to the initial problem. We have
+∞∑
t=0

Rt = S.

Consider

4 =
+∞∑
t=0

βt [u(φ(R∗t ))− u(φ(Rt) + f(kt)− kt+1)] .

We have

4 ≥
+∞∑
t=0

βtu′(φ(R∗t ))φ
′(R∗t )(R

∗
t −Rt) +

+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt))

≥ λ(
+∞∑
t=0

R∗t −
+∞∑
t=0

Rt) +
+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt))

≥
+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt)).

Recall that ∀t, R∗t+1 < R∗t . Since u′(φ(R∗t ))φ
′(R∗t ) = βu′(φ(R∗t+1))φ

′(R∗t+1) we
have u′(φ(R∗t )) > βu′(φ(R∗t+1)),∀t. From part (a), there exists T such that
kt = 0,∀t ≥ T + 1. Therefore

4 ≥
T∑

t=1

βtu′(φ(R∗t ))(kt − f(kt)).

Since f ′(k) < 1 and f(0) = 0, we have f(k) < k. Thus, 4 > 0. This is a
contradiction.
Now, let k0 > 0. Then we have βtu′(φ(R∗t ))φ

′(R∗t ) = λ for some λ > 0 and
t ≥ 1, and u′(φ(R∗0)+f(k0))φ′(R∗0) ≤ βu′(φ(R∗1))φ

′(R∗1) with equality if R∗0 > 0.
The same computations as above give

4 ≥
T∑

t=2

βtu′(φ(R∗t ))(kt − f(kt)) + u′(f(k0) + φ(R∗0))k1 − βu′(φ(R∗1))f(k1).

When k0 = 0 we have u′(φ(R∗0)) > βu′(φ(R∗1)). But R∗0 and R∗1 are continuous
in k0. Hence, when k0 ≤ ε with ε small enough, we still have u′(f(k0)+φ(R∗0)) >
βu′(φ(R∗1)). A contradiction arises as before.

We expect that, when the marginal productivity of the technology is low,
the country will never accumulate if the stock of non-renewable resource is very
large. The result is true if we assume R̂ = +∞. To simplify the proof we will
use some explicit forms of the functions u and φ.

Proposition 7 Assume φ′(0) < +∞ and f ′(kI) < 1. Assume also R̂ = +∞,
φ(R) = aR, a > 0 and u(c) = cθ

θ with 0 < θ < 1. Let k0 > 0 be given. Then
we have k∗t = 0,∀t, when S is large enough.
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Proof : Let (R∗t )t=0,...,+∞ be the solution. We have

∀t ≥ 1, µ0 + a (f(k0) + aR∗0)
θ−1 = βta(aR∗t )

θ−1 (2)

where µ0 ≥ 0, and µ0R
∗
0 = 0. (3)

We obtain

∀t ≥ 1, R∗t =
β(1−θ)t

a

[
µ0 + a (f(k0) + aR∗0)

θ−1

a

] 1
θ−1

+∞∑
t=0

R∗t = R∗0 +
β1−θ

a(1− β1−θ)

[
µ0 + a (f(k0) + aR∗0)

θ−1

a

] 1
θ−1

,

and µ0R
∗
0 = 0.

R∗0, and when R∗0 = 0, µ0 will be determined by the contraint S =
+∞∑
t=0

R∗t . It is

obvious that µ0 is a decreasing function of S, while R∗0 is an increasing function
of S. Thus, when S is high enough, we have µ0 = 0 and R∗0 > 0. Hence,
from relation (2), we get (f(k0) + aR∗0)

θ−1 = β(aR∗1)
θ−1, i.e. u′(f(k0)+aR∗0) =

βu′(aR∗1). Using the proof of Proposition 6, we conclude that the optimal path
(k∗t ) equals 0.

We now come to the question of the curse of the non-renewable resource. If
we agree to say that the curse appears when the economy collapses with a rate
larger with non-renewable resource than without, we then show in the following
proposition that the natural resource may be a curse.

Proposition 8 Assume u(c) = cθ

θ , 0 < θ < 1, f(k) = Ak, 0 < A < 1,
φ(R) = aR, a > 0, and R̂ = +∞. When the total stock S is high, even if
k0 > 0, the optimal way is to exhaust resources and not to accumulate. More-
over, the optimal capital paths in the case without natural resource and the one
with natural resource will converge to 0. And if a < A, the optimal capital
path converges to 0 faster in the case with non-renewable natural resource than
without it.

Proof : Consider Problem (A) without natural resource.

max
+∞∑
t=0

βtu(ct)

under the constraints

∀t, ct + kt+1 ≤ Akt, A < 1, k0 > 0.
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The optimal consumptions satisfy

∀t,
(
c∗t+1

c∗t

)1−θ

= βA < 1. (4)

It is well-known that k∗t → 0, when t → +∞. The optimal value of the in-
tertemporal utility is:

+∞∑
t=0

βtu(c∗t ) =
(∑

(βAθ)
t

1−θ

) c∗0θ

θ

with c∗0 ≤ Ak0

Now, consider Problem (B) with an exhaustible resource. Suppose the country
does not accumulate. The optimal consumptions will satisfy

∀t,
(
c∗t+1

c∗t

)1−θ

= βa. (5)

The optimal value of the intertemporal utility is:

+∞∑
t=0

βtu(c∗t ) =
(∑

(βaθ)
t

1−θ

) c∗0θ

θ

with c∗0 =
(Ak0 + aR∗0)

θ

θ

and R∗0 −→ +∞ when S −→ +∞. This shows that it is optimal not to
accumulate when S is large. From Proposition 6, the optimal capital sequence
of Problem (B), k∗t , converges to 0, when t → +∞. Relations (4) and(5) show
that the convergence to 0 is faster in the case with non-renewable resource. Is
it a paradox? No. Without resources, we are blocked by k0. With abundant
resources, R∗0 becomes very large when S is large. And the total utility returns
are higher even the rate of collapse is higher.

We now study the long term of our economy with an exhaustible resource.
We know, from Dechert and Nishimura [3], that if f ′(0) < 1

β < max{f(k)
k :

k > 0}, then there exists kc(< kI < k̃, with f ′(k̃) = 1), such that if k0 < kc

then any solution k to Problem (Q) converges to 0, and if k0 > kc, then it
converges to a high steady state ks fulfilling f ′(ks) = 1

β . In other words, we
have a poverty trap. We will show, under some more assumptions, that if S
is high enough the poverty trap can be passed over in our model. We need a
preliminary lemma.

Lemma 4 Consider the following problem:

max
+∞∑
t=0

βtu(ct)
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under the constraints

c0 + k1 ≤ f(k0)

c1 + k2 ≤ f(k1) + a, a ≥ 0,

ct + kt+1 ≤ f(kt)

∀t, 0 ≤ ct, 0 ≤ kt, k0 > kI .

Assume f ′(kI) = +∞. Then, for any a ≥ 0, we have a unique solution
{k∗1(a), ..., k∗t (a), ....}. Moreover, k∗1(a) > kI , k∗1(a) decreases while f(k∗1(a)) + a

increases, when a increases.

Proof : Under the assumption that f ′(0) < 1
β < max{f(k)

k : k > 0}, when
k0 > kI and a = 0, any optimal path will be bounded below by kI (see Dechert
and Nishimura [3]). We just consider the feasible paths which are bounded
below by kI . In this case, the constraints will be strictly concave, since the
function f is strictly concave for k > kI . Hence the solution will be unique.
Moreover the Value function is strictly concave and differentiable when a = 0.

Since for a = 0, k∗1(a) > kI , f(k∗1(a)) > kI , it will still be true when a > 0
small enough. We have the Bellman equation

V (f(k0)) = max
0≤y≤f(k0)

{u(f(k0)− y) + βV (f(y) + a)}

When a > 0 is small, k∗1(a) satisfies

u′(f(k0)− k∗1(a)) = βV ′(f(k∗1(a))) + a)f ′(k∗1(a)). (6)

Assume that a increases and f(k∗1(a))+a decreases. In this case, k∗1(a) decreases,
and the left-hand side of (6) decreases. But the right-hand side increases since
V ′(k) and f ′(k) are decreasing functions for k > kI . We have a contradiction.

It is easy to check that k∗1(a) decreases when a is small and increases.
Assume there exists a, the maximum value of a such that k∗1(a) ≥ kI . Let

a converge to a. In this case, k∗1(a) converges to kI . For a < a, we have the
Euler condition:

f ′(k∗1(a)) =
u′(f(k0)− k∗1(a))

βu′(f(k∗1(a) + a− k∗2(a)))

≤ u′(f(k0)− k∗1(a))
βu′(f(k∗1(a) + a))

.

Taking the limits we get a contradiction:

+∞ = f ′(kI) ≤
u′(f(k0)− kI)
βu′(f(kI + a))

< +∞.

Hence, for all a ≥ 0, k∗1(a) > kI . We can prove as before, when a is small, that
k∗1(a) decreases while f(k∗1(a)) + a increases, when a increases.
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Proposition 9 Assume there exists R̃ ∈ (0, R̂) such that φ(R) = aR, a > 0
when 0 ≤ R ≤ R̃, and 1 < f ′(0) ≤ 1

β ≤ max{f(k)
k : k > 0}. Define k′0 by

f(k′0) = φ(R̃). Assume k′0 > kI . Assume moreover that f ′(kI) = +∞. Let
k0 ≥ 0. The optimal sequence, k∗t → ks as t→ +∞, if S is high enough.

Proof : ¿From Proposition 6, there exists T∞ such that:

c∗T∞−2 + k∗T∞−1 = f(k∗T∞−2) + φ(R∗T∞−2)

c∗T∞−1 + k∗T∞ = f(k∗T∞−1) + φ(R∗T∞−1)

c∗T∞ + k∗T∞+1 = f(k∗T∞)

c∗t + k∗t+1 = f(k∗t ), ∀t ≥ T∞ + 1.

Case 1: We have R∗T∞−1 ≥ R̃.
Let k∗′0 satisfy f(k∗′0 ) = f(k∗T∞−1) + φ(R∗T∞−1). Then, k∗′0 > kI . The sequence
{k∗t }t≥T∞ is optimal for the growth model with initial capital k∗′0 > kI . It will
converge to the steady state ks since kI > kc.
Case 2: We have R∗T∞−1 ≤ R̃ and R∗T∞−2 ≤ R̃.
We have, from the Euler conditions

f ′(k∗T∞−1) ≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

= 1

hence, k∗T∞−1 ≥ k̃ > kI (f ′(k̃) = 1) and as before, the optimal path converges
to the steady state.
Case 3: We have R∗T∞−1 ≤ R̃ and R∗T∞−2 ≥ R̃.
Let k∗′0 satisfy f(k∗′0 ) = f(k∗T∞−2) + φ(R∗T∞−2). Then, k∗′0 > kI . ¿From Lemma
4, we have k∗T∞−1 > kI . As before, the optimal path converges to the steady
state.

In the following proposition we drop the assumption that the technology φ
is linear in a neighborhood of 0. But we will strengthen the assumptions on the
marginal productivity of capital.

Proposition 10 Assume there exists R̃ ∈ (0, R̂) such that, if k′0 satisfies f(k′0) =
φ(R̃), then k′0 > kI . Assume moreover that f ′(kI) = +∞ and φ′(0)

φ′( eR)
< f ′(0) ≤

1
β ≤ max{f(k)

k : k > 0}. Let k0 ≥ 0. The optimal sequence, k∗t → ks as t→ +∞,
if S is high enough.

Proof : We just consider Case 2 in the proof of the previous Proposition :
R∗T∞−1 ≤ R̃ and R∗T∞−2 ≤ R̃.
We have, from the Euler conditions

f ′(k∗T∞−1) ≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

≤ φ′(0)

φ′(R̃)
< f ′(0).
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Observe that f ′(k) > f ′(0) for k ∈ [0, ks]. Hence k∗T∞−1 > ks > kI . The optimal
sequence {k∗t }t≥T∞ converges therefore to ks.

In the following proposition, we assume R̃ = +∞.

Proposition 11 Assume R̂ = +∞, φ(R) = aR, a > 0 and 1 < f ′(0) ≤ 1
β ≤

max{f(k)
k : k > 0}. Let k0 ≥ 0. The optimal sequence, k∗t → ks as t → +∞, if

S is high enough.

Proof : Let (Ŝν) be a sequence which converges to +∞. We consider two cases.
Case 1: For any ν, the optimal sequence (R∗νt ) verifies, R∗ν0 = S

ν . Let kν
0

satisfy f(kν
0 ) = f(k0)+aS

ν . For ν large enough, kν
0 > kc. An optimal sequence

(k∗νt ) is also an optimal sequence for the convex-concave optimal growth-model
with initial endowment equal to kν

0 . Since this one is larger than the critical
value kc, the optimal path (k∗νt ) will converge to the high steady state ks. And
the proof is over.
Case 2. From Proposition 6, there exists T∞ such that:

c∗T∞−2 + k∗T∞−1 = f(k∗T∞−2) + aR∗T∞−2

c∗T∞−1 + k∗T∞ = f(k∗T∞−1) + aR∗T∞−1

c∗T∞ + k∗T∞+1 = f(k∗T∞)

c∗t + k∗t+1 = f(k∗t ), ∀t ≥ T∞ + 1.

We have

f ′(k∗T∞−1) ≤
u′(c∗T∞−2)
βu′(c∗T∞−1)

≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

= 1.

We cannot have k∗T∞−1 = 0, since f ′(0) > 1. Hence k∗T∞−1 ≥ k̃ which is
the unique point with f ′(k̃) = 1. Moreover, k̃ > kc. Let k′0 satisfy f(k′0) =
f(k∗T∞−1) + aR∗T∞−1. Then, k′0 > kc. The sequence (k∗t ), t = T∞ − 1, ...,+∞
is also an optimal solution to the convex-concave optimal growth-model with
initial endowment equal to k′0. Since k′0 > kc, the path (k∗t ), t = T∞− 1, ...,+∞
converges to the high steady state.

Remark 2 We will make a small change in H2 by dropping the assumption
f ′(+∞) < 1. Assume f(k) = Ak,A > 1 and φ(R) = aR. Then it is optimal to
exhaust the resource at period 0. Indeed, the Euler conditions will be:

A = f ′(k∗t+1) ≤
φ′(R∗t+1)
φ′(R∗t )

if R∗t+1 > 0

and A = f ′(k∗t+1) ≥ φ′(0)
φ′(R∗t )

= 1

if R∗t+1 = 0.
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¿From these inequalities, since A > 1, we cannot have R∗t+1 > 0, for some t ≥ 0

since
φ′(R∗

t+1)

φ′(R∗
t )

= 1. Hence R∗t+1 = 0, ∀t ≥ 0, and R∗1 = S. Observe that

k∗t → +∞ if A > 1
β .

However, it seems not realistic to completely exhaust the resource in one period.
Actually, in our discrete time model, one period may be many years. Our story
tells that, in developed countries which possess non-renewable resources, it is
optimal to exhaust it quickly in order to build a large initial capital stock and
then converge faster to the steady state.

4 Competitive Equilibrium With Tax/Subsidy

In our intertemporal economy, there is a single firm which produces, with a
technology represented by the function f , an aggregate good which can be
consumed or used as physical capital. This firm also imports this aggregate
good. The importations are covered by the exportation of the natural resource
that the firm extracts. Since we face increasing returns for low levels of capital,
we will define an equilibrium with a tax/subsidy scheme to firms, which will be
supported by the consumer or redistributed to her as a lump sum transfer. The
scheme is defined as follows. If the value of the input is larger than the value
of the output, then firms will receive a subsidy equal to the difference. A tax
will be defined analogously in the reverse case.

Let {kt}t=1,2,..,+∞ be a firm production plan. Formally, if (pt) is the sequence
of prices of the aggregate good, r is the price of initial capital stock k0, and
{σt(.)}t is a system of subsidy, then firm solves the problem

Π = max
(kt),(Rt)

[
+∞∑
t=0

pt(f(kt)− kt+1)− rk0 +
+∞∑
t=0

σt(kt) +
+∞∑
t=0

ptφ(Rt)

]
considering the tax/subsidy scheme as given, and under the constraints:

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt), 0 ≤ Rt,
+∞∑
t=0

Rt ≤ S, and k0 is given.

There is one representative consumer who owns the firm and the initial
capital stock k0. Her problem is

max
(ct)

+∞∑
t=0

βtu(ct)

under the constraints
+∞∑
t=0

ptct ≤ Π + rk0 −
+∞∑
t=0

σt(kt),
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and ct ≥ 0,∀t.

Let us recall that l∞ = {x : supt |xt| < +∞} and l1 = {p :
+∞∑
t=0

|pt| < +∞}.

Definition 1 The list {c∗,k∗,R∗,p∗, r∗,σ∗(.)}, is a competitive equilibrium of
our economy if:

(1) c∗ ∈ l∞+ , k∗ ∈ l∞+ , R∗ ∈ l∞+ , p∗ ∈ l1+, r∗ ≥ 0, {p∗ , r∗} 6= {0 , 0}.
(2) Given {p∗, r∗,σ∗(.)}, {k∗,R∗} solve the problem of the firm, i.e.

Π∗ = max
(kt),(Rt)

[
+∞∑
t=0

p∗t (f(kt)− kt+1)− r∗k0 +
+∞∑
t=0

σ∗t (kt) +
+∞∑
t=0

p∗tφ(Rt)

]

=

[
+∞∑
t=0

p∗t (f(k∗t )− k∗t+1)− r∗k0 +
+∞∑
t=0

σ∗t (k
∗
t ) +

+∞∑
t=0

p∗tφ(R∗t )

]
.

(3) Given {p∗, r∗,σ∗(.)}, c∗ solve the consumer’s problem:

+∞∑
t=0

βtu(c∗t ) = max
(ct)

+∞∑
t=0

βtu(ct)

under the constraints

+∞∑
t=0

p∗t ct ≤ Π∗ + r∗k0 −
+∞∑
t=0

σ∗t (k
∗
t ).

(4) Market Clearing:
∀t, c∗t + k∗t+1 = f(k∗t ) + φ(R∗t ),

Proposition 12 Assume H1,H2,H3, φ′(0) > 1 and k0 > 0. Moreover, we
assume

(i) either f ′(0) > 1
β ,

(ii) or the assumptions in Proposition 9 or Proposition 10 are fulfilled.
Let {c∗,k∗,R∗} be a solution to our problem (P). Define:

∀t, p∗t = βtu′(c∗t ), r
∗ = p∗0f

′(k∗0),

and σ∗t (k) = p∗t f
′(k∗t )k − p∗t f(k).

Then the list {c∗,k∗,R∗,p∗, r∗,σ∗(.)} is a competitive equilibrium.
Moreover, the equilibrium profit of the firm is positive.

Proof : Obviously, {c∗,k∗,R∗} ∈ l∞×l∞×l∞. We now prove that {(βtu′(c∗t ))t} ∈
l1. Indeed, under our assumptions, the optimal path {k∗t }t converges to the high
steady state ks and the optimal consumptions converge to cs = f(ks)− ks > 0.

Hence
+∞∑
t=0

βtu′(c∗t ) < +∞.
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We now prove that, given {p∗, r∗,σ∗(.)}, {k∗,R∗}, solve the problem of the
firm. First, observe that there exists λ > 0 and a non-negative sequence µ such
that

∀t, p∗tφ′(R∗t ) = βtu′(c∗t )φ
′(R∗t ) = λ− µt, and µtR

∗
t = 0,

and from Euler conditions:

∀t, p∗t f ′(k∗t ) = p∗t−1.

Now, take a feasible sequence from k0, (k0, k1, ..., kt, ...) and let

4T =

[
T∑

t=0

p∗t (f(k∗t )− k∗t+1)− r∗k0 +
T∑

t=0

σ∗(k∗t ) +
T∑

t=0

p∗tφ(R∗t )

]

−

[
T∑

t=0

p∗t (f(kt)− kt+1)− r∗k0 +
T∑

t=0

σ∗(kt) +
T∑

t=0

p∗tφ(Rt)

]
.

Then we have:

4T ≥
T∑

t=1

[(
p∗t f

′(k∗t )− p∗t−1

)
(k∗t − kt)

]
− p∗T (k∗T+1 − kT+1) +

T∑
t=0

p∗tφ
′(R∗t )(R

∗
t −Rt)

= −p∗T (k∗T+1 − kT+1) + λ
T∑

t=0

(R∗t −Rt)−
T∑

t=0

µtR
∗
t +

T∑
t=0

µtR
t

≥ −p∗Tk∗T+1 + λ
T∑

t=0

(R∗t −Rt).

Since
+∞∑
t=0

R∗t = S ≥
+∞∑
t=0

Rt, we have limT 4T ≥ limT {−p∗Tk∗T+1}. But k∗T+1

converges to ks. Since
+∞∑
t=0

p∗t < +∞, we have p∗t → 0. Therefore, limT 4T ≥ 0.

We now prove that, given {p∗, r∗,σ∗(.)}, c∗ solves the consumer’s problem.
Indeed, let c satisfy

+∞∑
t=0

p∗t ct ≤ Π∗ + r∗k0 −
T∑

t=0

σ∗(k∗t ).

We have

+∞∑
t=0

βtu(c∗t )−
+∞∑
t=0

βtu(ct) ≥
+∞∑
t=0

βtu′(c∗t )(c
∗
t − ct)

=
+∞∑
t=0

p∗t (c
∗
t − ct) ≥ 0

since
+∞∑
t=0

p∗t c
∗
t = Π∗ + r∗k0 −

T∑
t=0

σ∗(k∗t ).
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Finally, market clearing condition is obviously satisfied.
To prove that the profit, at equilibrium, of the firm is positive, observe that

Π∗ ≥
[

+∞∑
t=0

p∗t (f(kt)− kt+1)− r∗k0

]
+

+∞∑
t=0

σ∗t (kt)+
+∞∑
t=0

p∗tφ(Rt) for any feasible se-

quences (k0, k1, ..., kt, ...), (R0, R1, ..., Rt, ...). The sequences (k0, 0, ..., 0, ..) and
(R∗t )t=10,..,+∞ are feasible. Therefore,

Π∗ ≥ p∗0f(k0)− r∗k0 +
[
p∗0f

′(k0)− p∗0f(k0)
]
+

+∞∑
t=0

p∗tφ(R∗t ) > 0

since p∗0f(k0) − r∗k0 + [p∗0f
′(k0)− p∗0f(k0)] = 0, from the very definition of r∗.

5 Summary of the main results and conclusion

We summarize below the main results, according to the characteristics of the
technology.
(a) High marginal productivity of the technology

Assume φ′(0) < +∞ and F ′(0) > ρ + δ. Then the optimal capital path
(k∗t ) converges to the high steady state ks, with F ′(ks) = ρ + δ. The stock of
non-renewable resource is exhausted in finite time.
(b) Intermediate marginal productivity of the technology

Assume φ′(0) < +∞ and δ < F ′(0) ≤ ρ+ δ ≤ max{F (k)
k + 1 − δ : k > 0}.

The stock of non-renewable resource is exhausted in finite time.
(b.1) If the technology F is concave, then the optimal capital path converges

to zero.
(b.2) If the technology is convex-concave, the revenue function is linear (i.e.

the price is inelastic with respect to the demand), the initial resource stock is
large enough and F ′(kI) = +∞, then the optimal capital stock converges to
the high steady state ks.

(b.3) We drop the assumption that φ is linear in a neighborhood of the
origin. We maintain the conditions that the initial resource stock is large and
F ′(kI) = +∞. If the maximum of the revenue function R̂ is large and the net
marginal productivity F ′(0)−δ is high enough,but less than the social discount
rate ρ, then the optimal capital stock converges to the high steady state ks.
(c) Low marginal productivity of the technology

Assume φ′(0) < +∞ and F ′(k) < δ,∀k.
(c.1) There exists T such that k∗t = 0,∀t > T .
(c.2) The optimal capital path vanishes for any k0 small enough.
(c.3) Assume that the revenue function is linear and the utility function

CRRA. Given k0, the optimal capital path vanishes when the initial resource
stock S is large.
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We have then shown that exhaustible resources can, under certain circum-
stances among which the most important is a high marginal productivity of
capital at the origin compared with the social discount rate, allow a developing
economy to escape from the poverty trap. We have also shown that exhaustible
resources can be a curse, inducing a poor economy with a low marginal produc-
tivity of capital to collapse faster than if it had not been endowed with natural
capital. The initial abundance of the resource and the value of the maximum
marginal revenue that can be obtained by selling the resource extracted abroad
are also determining. If the initial resource stock is large and if it is possible
to extract a large amount of resource immediately, it is possible to escape from
the poverty trap even if the marginal productivity of capital at the origin is
intermediate. On the contrary, in the same case but with a low marginal pro-
ductivity of capital, the economy consumes first its resource and then collapses
when it it exhausted.

Finally, we prove, by using a tax/subsidy scheme for firms, that any optimal
path may be decentralized in a competitive equilibrium.

References

[1] Azariadis, C. and Stachurski, J. (2005), Poverty Traps in Handbook of Eco-
nomic Growth, P. Aghion and S. Durlauf eds., North Holland.

[2] Dasgupta, P. and Heal, G. (1974), The Optimal Depletion of Exhaustible
Resources, Review of Economic Studies, 41, 3-28.

[3] Dechert, W.D. and Nishimura, K. (1983), A complete characterization of
optimal growth paths in an aggregate model with a non-concave production
function, Journal of Economic Theory, 31, 332-354.

[4] Eliasson, L. and Turnowsky S. (2004), Renewable resources in an endoge-
nously growin economy: balanced growth and transitional dynamics, Jour-
nal of Environmental Economics and Management, 48, 1018-1049.

[5] Gylfason, T, Herbertsson, T.T. and Zoega, G. (1999), A mixed blessing:
Natural resources and economic growth, Macroeconomic Dynamics, 3, 204–
225.

[6] Le Van, C. and R.A. Dana (2003), Dynamic Programming in Economics
Kluwer Academic Publishers.

[7] Le Van C. and Saglam, H.C. (2004), Optimal growth models and the La-
grange multiplier, Journal of Mathematical Economics, 40, 393-410.

27



[8] Sachs, J.D. and Warner A.M. (2001), The curse of natural resources, Euro-
pean Economic Review, 45, 827–838.

28


