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Abstract
This paper studies the role of strategic teaching in coordination games

and whether changing the incentives of players to teach leads to more effi-
cient coordination. We ran experiments where subjects played one of four
coordination games in constant pairings, where the incentives to teach were
varied along two dimensions – the short run cost of teaching and the long
run benefit to teaching. We show which aspects of the game lead subjects to
adopt long run teaching strategies, and show that subjects try to manipulate
their opponent’s actions to pull them out of a situation of coordination fail-
ure. We also show that extending a model of decision making by introducing
a forward-looking component helps to track teachers’ behaviour more accu-
rately, and describes the way players behave in a more unified way across
both teachers and learners.

JEL codes: C91, D43, D83

Keywords: Game theory, Learning, Strategic Sophistication, Coordination,
Experiment

1 Introduction
According to the original concepts of game theory, players are fully rational,
which implies that in repeated games they completely anticipate the path of future
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play and take their actions accordingly. It is now commonly accepted that in many
situations players’ reasoning is more limited as their rationality might be bounded
by their cognitive abilities. Several approaches introduce bounded rationality in
the way players behave in repeated games. A large part of this literature — both
theoretical and experimental — considers purely adaptive players.1 In such learn-
ing models, players are modeled as myopic, taking actions based entirely on their
past experience and under the assumption that their opponents’ behaviour follows
an exogenous process. Consequently, such myopic and adaptive players do not
take into account the impact of their own actions on their opponents’ future be-
haviour. In other words, according to these approaches, strategic interactions do
not matter for players.

Even if full rationality might not seem reasonable in many cases, the assump-
tion that strategic considerations do not play any role in repeated games also seems
extreme in many situations. For example, Ellison (1997) studies a situation in
which a single rational player is part of a large population of myopic players, with
his main concern being when this lone rational player can move the population
to a new equilibrium by acting non-myopically. He shows that the rational player
can only move the population to a risk dominant equilibrium if he is sufficiently
patient. Offerman et al (2001) has also noted that in too intricate games strategic
reasoning is made very difficult and players consequently remain adaptive, but
in other experimental environments, players have proven to be more sophisticated
and use their actions, not only to optimize at a given time as myopic players would
do but also to manipulate their opponents’ behaviour in order to reach a prefer-
able outcome in the future. In other words, players might attempt to teach their
opponents.

We study teaching in coordination games. In particular, all of the games in
our experiments have two Pareto rankable pure strategy Nash equilibria and one
mixed strategy equilibrium. The equilibrium mixing probabilities are the same
in all four games and are such that the inefficient equilibrium is risk dominant.
Therefore, with myopic players we would expect frequent coordination failures.2

The question we address in the present study is on the precise determinants of
strategic teaching. In other words, we examine which payoff relevant elements are
likely to trigger strategic behaviour from players and how it impacts the achieved
outcome of a game. More precisely, teaching represents an investment according
to which players might forego short-run payoffs by playing sub-optimal actions

1In microeconomics see, among others, Fudenberg and Levine (1998), Hopkins (2002), Erev
and Roth (1998), Camerer and Ho (1999), Cheung and Friedman (1997), Crawford (1995),
Samuelson (1998) and Weibull (1997). In macroeconomics see Marcet and Sargent (1989), Cho
et al (2002) and Cho and Sargent (2008), among others.

2See, in particular, Ellison (1997), Kandori et al (1993) and Fudenberg and Levine (1998, Ch.
5).
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in order to manipulate their opponents and get more in the long-run by driving
the outcome of a game towards the basin of attraction of a preferable equilibrium.
Thus we design our games along two variables which parameterize both the short-
run cost of teaching and the long-run gain of such a strategy.

To be sure, we are not the first to study strategic teaching experimentally.
Ehrblatt et al (2008) and Terracol and Vaksmann (2009) identify the role of teach-
ing on convergence to Nash equilibrium. They show that in fixed matching envi-
ronments, teaching is relatively easily, which leads to higher convergence rates.
On the other hand, when subjects are randomly matched or are given limited in-
formation about their opponent’s payoffs, teaching is harder making convergence
rare. However, neither study is particularly well-suited to inform upon which spe-
cific properties of the game are likely to cause teaches to emerge.3 In the context
of weak-link games, Brandts and Cooper (2006) and Brandts et al (2007) have
shown that leaders often emerge who pull laggards out of coordination traps. In
the former paper, the game is symmetric, so who the question of who should teach
is difficult to determine, while in the latter paper, subjects within a group face dif-
ferent costs. Surprisingly, and unlike our results, it is not the subjects who have
the lowest cost (and therefore the largest incentives to teach) that are the most
likely leaders. Instead, leadership is driven by subjects with the most common
cost type. Finally, in a different context, Cason et al (2008) demonstrates teaching
in an indefinitely repeated game. Different from us, rather than teaching a stage
game Nash equilibrium, players in their game teach an “alternation” strategy. Like
us, they show that teaching changes as the degree on conflict in the game changes.

As previously mentioned, we vary the games according to the incentives of
the row player to teach along two dimensions. In order to study sophistication, in
addition to action choices, we also elicit beliefs of our subjects using a quadratic
scoring rule. Unlike usual proxies for beliefs, we show that a subject’s own ac-
tion influences his stated beliefs about his opponent. This suggests that subjects
believe their opponent is likely to best respond to their previously played actions,
potentially making teaching possible. We term this phenomenon a sophistication
bias in proxies for beliefs. We also show that the sophistication bias is greatest
when the teaching incentives are the largest.

The above result about beliefs shows that teaching could be successful, but it
doesn’t show that subjects actually teach. Our next result is to demonstrate that
subjects do, in fact, teach their opponent to play the Parteo efficient equilibrium
when teaching incentives are strong. In contrast, when teaching incentives are
weak, behaviour more closely mimics an adaptive learning rule. Beyond this,

3In Ehrblatt et al (2008), there is a unique, Pareto efficient Nash equilibrium, making behaviour
in the absence of teaching difficult to predict. On the other hand, the game used by Terracol
and Vaksmann (2009) had three pure-strategy Nash equilibria with Pareto incomparable payoffs,
making more than one teaching action quite likely.
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subjects’ attempts at teaching are rewarded when the incentives are high — play-
ers more frequently coordinate on the efficient equilibrium and earn higher long
run payoffs.

The paper is organized as follows. Section 2 introduces our games and ex-
perimental procedures. Section 3 shows that subjects converge more often to the
efficient equilibrium when teaching incentives are high. Section 4 demonstrates
sophistication in players’ belief-formation process, while Section 5 analyses the
determinants of sophistication in players’ choice behaviour.

In Section 6 we consider a stylized empirical model which allows subjects to
incorporate long run payoffs into their choice problem. Like Camerer et al (2002),
our model presumes that sophisticated players believe that they can influence the
actions of their opponent by repeatedly taking the same action. However, we
differ in one important aspect. In their model, if a sophisticated player knows
with certainty the learning parameters of his myopic opponent, then if teaching
starts it can be expected to continue forever. We view teaching as a higher order
learning process in which potential teachers learn about how quickly followers
learn. In such a model, teachers could conceivably stop teaching after a number
of periods if their opponent has not yet “caught on”.4 Our results show that when
teaching incentives are high, subjects do incorporate long run payoffs and that
our sophisticated model substantially outperforms the model with only myopic
decision makers.

Finally, Section 7 concludes the paper.

2 Experimental Design

2.1 Games & Incentives
In order to examine the emergence of teaching, we conducted a number of exper-
imental sessions. In particular, inexperienced subjects were brought into the ex-
perimental laboratory at the University of Paris 1 Panthéon-Sorbonne5 and were
asked to play one of the games in Figure 1 for a total of 20 periods. In order
to give teaching the best shot at emerging, subjects were put in fixed pairs, and
this information was clearly stated in the instructions. Before each experimen-
tal session began, subjects were randomly assigned the role of either a row or a
column player and were told that they would remain in that role for the entire
duration of the experiment. Payoffs were denominated in experimental currency
units and were converted into Euros at the conclusion of the experiment, which

4That teachers might give up has been documented by Ehrblatt et al (2008). Such behaviour is
also present in our data.

5For conducting the experiment we used the experimental software ‘Regate’ (Zeiliger, 2000).
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generally lasted one hour or less. Subjects earned, on average, e14.1 for their
participation.6 A translation from the original French instructions given to the
subjects can be found in an online appendix. In addition, subjects received an oral
summary of the experimental conditions detailed in the instructions and questions
were answered before the experiment began.

Figure 1 shows the games used in the experiment. Table headings are ex-
plained below in the text. Notice that all of our games have two pure-strategy
Nash equilibria and one mixed-strategy Nash equilibrium. In these games, the
pure strategy equilibria are Pareto rankable, both players strictly prefer the equi-
librium (X ,X) to the equilibrium (Y,Y ). The mixed strategy equilibrium was
{(0.8,0.2);(0.8,0.2)}. These kind of games are typically characterized by co-
ordination failure and we will emphasize the determinants of strategic behaviour
which might overcome this issue. Note that one desirable feature of our design is
that, since all four games have the same mixed strategy equilibrium, their basins
of attraction under adaptive learning must be largely unchanged. Therefore, any
differences across games in terms of coordination cannot be attributed entirely to
adaptive behaviour.

Figure 1: Payoff Matrices Used In The Experiments

TPh/TC` TPh/TCh
X Y

X 40,45 8,37
Y 39,0 12,32

X Y
X 40,45 0,37
Y 37,0 12,32

TP`/TC` TP`/TCh
X Y

X 20,45 8,37
Y 19,0 12,32

X Y
X 20,45 0,37
Y 17,0 12,32

It is natural to expect a teacher to try to teach his way to the Pareto optimal
Nash equilibrium, (X ,X). Likewise, in the absence of teaching, it is natural to
expect frequent play of the risk-dominant equilibrium, (Y,Y ).7 In order to sys-
tematically study teaching, we originally conjectured that two parameters that
would affect teaching can be used to describe coordination games. Each of the

6Throughout the paper, all payoffs are denominated in experimental currency units. The con-
version factor was ECU100 = e2.1.

7Refer to the citations mentioned in Footnote 2 for theoretical justification. The experiments of
Battalio et al (2001) documented frequent play of the inefficient equilibrium. In weak link games,
van Huyck et al (1990), Knez and Camerer (1994, 2000), Brandts and Cooper (2006), Brandts et al
(2007) and Chaudhuri et al (2009), among others, showed frequent play of inefficient equilibria.
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games employed, therefore, varies one of these parameters which we now explain
in some detail. More precisely, teaching is best thought of as an investment: the
successful teacher will incur short-run costs in order to obtain a long-run gain.
Therefore, the games were designed to vary either the short-run cost or the long-
run gain. Note, however, that in order to study teaching, we also need teachers to
be paired with subjects who are capable of being taught (e.g., an adaptive learner).
In order to do this, in all of our games we kept the payoffs to the column player
fixed and, moreover, the incentives that the column player had to engage in long-
run behaviour were always lower than those of the row player. As for the row
players, their incentives to teach were varied from low to high in each of two
dimensions which we now discuss.

First, consider the short-run costs associated with teaching: by playing X when
he believes that his opponent will play X with probability p, player i, i = r,c, incurs
a teaching cost (TC), given by

EY
i (p)−EX

i (p) = θi · (p∗− p)

where Ea
i (p) is player i’s expected payoff from taking action a, a = X ,Y , given a

belief of p, p∗ is the equilibrium mixing probability (i.e., p∗ = 0.8) and, denoting
πi(a,a′) player i’s payoff when he plays a and his opponent plays a′, we have:

θi = πi (X ,X)−πi (X ,Y )+πi (Y,Y )−πi (Y,X)

Thus, θ indexes a player’s teaching cost and can be called the teaching cost pa-
rameter. The teaching cost is thus a penalty attached to playing a teaching action
despite the fact that it is not a best response to static beliefs. We expect teaching
to be negatively correlated with the teaching cost parameter since higher short-run
costs of teaching should focus attention on static profit maximisation.

Next consider the long-run return on investment. By successfully teaching,
the game converges to (X ,X). So teaching implies playing X and facilitates the
emergence of the good equilibrium (X ,X), even though playing Y would be a
best response but would facilitate the emergence of the bad equilibrium (Y,Y ).
Therefore, we will measure the teaching premium (TP) as the percentage increase
in payoffs going from the bad to the good equilibrium. That is, the teaching
premium parameter for player i is:

ψi =
πi(X ,X)−πi(Y,Y )

πi(Y,Y )

and we expect the teaching premium parameter to be positively correlated with
teaching since a higher teaching premium implies a higher long-run reward from
teaching.
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We ran four different games varying the size of the teaching cost and the teach-
ing premium parameters, High or Low, for the row player. In order to encourage
column players to remain passive, we kept their teaching incentives constant and
substantially weaker than for the row player. We expect row players, particularly
when the incentives are strong, to take the role of a teacher. We summarize the
experimental games in Table 1.

Table 1: Summary of Experimental Games
Game ψr θr ψc θc #Subjects

TPh/TC` 2.33 5 0.41 40 34
TPh/TCh 2.33 15 0.41 40 32
TP`/TC` 0.67 5 0.41 40 38
TP`/TCh 0.67 15 0.41 40 30

Remark 1 Observe that what we call the teaching cost is simply what Battalio
et al (2001) have called the “optimization premium”. These authors focus on
adaptive (myopic) behaviour in 2× 2 coordination games with Pareto rankable
equilibria and find that the lower is the optimization premium, or in our view, the
lower is the teaching cost, the more efficient is coordination. Although Battalio
et al (2001) consider a random matching environment which mitigates the in-
centives to teach, their games confound the optimization and teaching premia; in
particular, as they lower the optimization premium from game to game, they simul-
taneously increase the teaching premium, potentially making attribution of cause
problematic. In our experiments, we try to isolate both of these effects separately.
Moreover, our fixed-pairs matching protocol should give our subjects pause to
consider the long-run benefits of teaching — in our terminology, the teaching pre-
mium — and so we also look for sophistication in subjects’ behaviour by studying
a particular forward-looking model of decision making (see Section 6).

2.2 Belief Elicitation
In this study, among other things, we aim to perform a detailed examination of
players’ propensity to play sub-optimal actions during a possible teaching phase.
In order to do this, we must elicit players’ beliefs to precisely determine their best
response at each time. In each round, before choosing their action, subjects also
reported their beliefs about the likely action of their match in that round. Beliefs
were rewarded for accuracy according to a quadratic scoring rule, which should
induce truth-telling if subjects are risk neutral.8 The exact parameterisation of the

8Several studies (e.g. Offerman and Sonnemans (2001), Nyarko and Schotter (2002)) indicate
that subjects report their true beliefs when incentivized by the Quadratic Scoring Rule. Rutström
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QSR used can be found in the experimental instructions. As usual in this kind of
design, we tried to keep the reward for reporting beliefs small in comparison with
the payoffs associated to the game so that players could not use their belief payoff
as a “hedge” against potentially low stage-game payoffs.

At the end of each round, subjects were informed about the action of their
opponent, their game payoff, their prediction payoff and the game payoff of their
opponent for the current round. When deciding in a given round, subjects could
always see on their screen the entire history of actions and stage game payoffs
as well as their predictions in earlier rounds, although they could not see their
prediction payoffs from earlier rounds.

3 Summary: Convergence & Coordination
We begin our analysis of the experimental results with a brief look at the outcomes
of the games that our subjects played. Specifically we look at how well coordi-
nated subjects’ actions were, including whether or not they converged and, if so,
which equilibrium they converged to.

Table 2 tabulates the number of groups that converged to each of the pure
equilibria as well as those who did not converge. We will say that the game con-
verged to a pure strategy Nash equilbrium if both players chose their part of the
Nash equilibrium for at least 3 consecutive periods before the end of the game
(e.g., periods 18, 19 and 20).9 For each game, we also conduct a proportions test
to see whether there is a difference in convergence to the efficient equilibrium vs.
the inefficient equilibrium. For the game TPh/TC`, three times as many groups
converge to the efficient equilibrium as do to the inefficient equilibrium. More-
over, this difference is significant at the 5% level. A similar result holds for the
game TP`/TC`, though the difference is only significant at the 10% level. Notice
that only in the game least conducive to teaching (i.e., TP`/TCh) do more groups
converge to the inefficient equilibrium, although the difference is not statistically
significant.

As teaching is per se a dynamic strategy, Table 3 shows the average frequency
subjects coordinated on (X ,X) and (Y,Y ), respectively, in the first 10 and in the
last 10 periods. As can be seen, for the game TPh/TC` our subjects played the

and Wilcox (2004), however, finds that an intrusive scoring rule for belief elicitation affects peo-
ple’s behaviour. More recently, Costa-Gomes and Weizsäcker (2008) report that subjects choose
actions in one-shot games assuming a very low level of rationality of their opponent, but that their
beliefs are generally more sophisticated. In the language of level-k theory, subjects play according
to L1 but report L2 beliefs.

9We will also allow games with a final period deviation by one of the players to be considered
convergent, but in such cases we require that both players chose the Nash action for 5 or more
periods before the final period deviation.
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Table 2: Tabulating convergence in our games
TPh/TC` TPh/TCh TP`/TC` TP`/TCh

(X ,X) 9∗∗ 6 8∗ 4
(Y,Y ) 3 4 3 6
N.C. 5 6 8 5
∗∗ significant at 5%; ∗ significant at 10%

Pareto efficient equilibrium more frequently in the latter half of the game, while
for the games TP`/TCh and TPh/TCh they played the Pareto inefficient equilibrium
significantly more frequently in the latter half of the game. Interestingly, we see
that despite the weak incentives to teach, subjects in the TP`/TC` game managed
to play the Pareto efficient equilibrium approximately 45% of the time — even in
periods 1 – 10, they played it 44% of the time.

Table 3: An Examination of Successful Coordination

TPh/TC` TPh/TCh TP`/TC` TP`/TCh
(X ,X)1−10 0.300 0.375 0.437 0.327
(X ,X)11−20 0.471 0.425 0.463 0.327

paired t-test 1.84∗ 1.14 0.43 0.00
(Y,Y )1−10 0.253 0.231 0.274 0.267
(Y,Y )11−20 0.235 0.319 0.284 0.487

paired t-test 0.38 1.78∗ 0.14 2.55∗∗∗
∗ 10% level of significance; ∗∗ 5% level of significance; ∗∗∗ 1% level of significance. For each statistic
the number of observations is the number of pairs in each game, i.e. respectively 17, 16, 19 and 15 for
games TPh/TC`, TPh/TCh, TP`/TC` and TP`/TCh.

Finally, if we look at the frequency of efficient coordination (i.e., the fraction
of times players coordinated on (X ,X), conditional on playing (X ,X) or (Y,Y )),
we see that this fraction is significantly higher for the game TPh/TC` than for the
game TP`/TCh in the second half of the game (z = 1.711, p = 0.097). In no other
cases was there a significant difference. That is, at least when the discrepancy
between teaching incentives is particularly large, players are significantly more
able to overcome the coordination failure and more often reach the Pareto efficient
equilibrium.

Thus, the above-mentioned results on coordination across games are broadly
consistent with our conjectures about players’ teaching incentives. Moreover, re-
member that, as we said in Section 2, these differences in the equilibria achieved
are hard to rationalize under the perspective of purely adaptive learning since,
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because of the symmetry in the (pure and mixed) equilibrium structures of our
games, we do not expect the forces that drive players’ behaviour under these ap-
proaches to make different outcomes emerge. We believe that these descriptive
results suggest a more sophisticated view of players’ behaviour, that we will pre-
cisely examine in the rest of the paper.

4 Do Subjects View Their Opponents as Being Ca-
pable of Learning?

The above results show that when teaching incentives are high, players are more
likely to converge to the Pareto efficient equilibrium, while when teaching incen-
tives are low, they are more likely to converge to the Pareto inefficient equilib-
rium. We now seek to show that these differences can be explained by differences
across treatments in the degree of strategic teaching. Note that successful teaching
requires a partner who is capable of learning and a teacher who believes that his
partner is, in fact, capable of learning. Indeed, if the teacher (he) believes that
his opponent (she) updates his actions largely due to the observed history of play,
and that she updates sufficiently rapidly, then he might be willing to make the re-
quired short term investment. In this section, we examine whether players beliefs
are influenced by their own actions; that is, whether they see their opponents as
learners.

Our strategy is to determine whether subjects believe that they can influence
their opponent’s actions through their own choices. This implies, in the spirit
of Terracol and Vaksmann (2009), an investigation of players’ belief formation
process to check whether they take into account the influence brought by their
own past actions when forming beliefs about their opponents’ behaviour at a given
time. That is, we want to see whether subjects view their opponent as an adaptive
learner who is capable of being taught something.

Our aim in this section is not to explicitly model the way a player’s action
impacts his opponent’s behaviour. Instead, we will show that a player’s beliefs
depend also upon their own actions (in addition to the actions of one’s opponent),
and so, are more sophisticated than is often assumed, which validates a necessary
pre-condition for teaching. More precisely, before players teach strategically, they
first have to think strategically and perceive that their own past actions are likely to
influence their opponent’s current and future behaviour. A naive way to check this
would be to directly examine whether players’ beliefs vary according to their own
previously chosen action. Beliefs, however, may also depend on the history of
the opponents’ past actions, as postulated by traditional proxies used to describe
players’ belief-formation process. If it is the case one must filter out the impact of
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these past actions to avoid spurious correlations between ai(t−1), player i’s own
action in the previous round, and his current beliefs.10

Adopt the terminology of Nyarko and Schotter (2002) and refer to beliefs
based only on the history of the opponents’ actions as “empirical” beliefs. Denote
empirical beliefs by B̃a

i (t) to distinguish from the stated beliefs, Ba
i (t), reported

by players. Next define Da
i (t) = Ba

i (t)− B̃a
i (t) to be the difference between stated

and empirical beliefs. Again, taking this difference allows us to avoid the above-
mentioned spurious correlations. Observe that since B̃a

i (t) is conditional on the
history of the opponents’ past actions, but not on the action chosen by player i in
period t−1 (i.e., ai(t−1)), then if Da

i (t) depends on ai(t−1), so too must stated
beliefs. In this case, we may conclude that players think that their opponents
modify their behaviour according to the history of the game, and take this into
account in their own beliefs; in other words subjects realize that their opponents
can learn, which is necessary for teaching to even be possible.

We chose to model empirical beliefs, B̃a
i (t), with the γ-weighted beliefs model

of Cheung and Friedman (1997), where the belief held by player i about the prob-
ability that player j will play action a in round t +1 is given by:

B̃a
i (t +1) =

1(a j(t)=a) +∑
t−1
u=1 γu

1(a j(t−u)=a)
1+∑

t−1
u=1 γu

(1)

where 1(a j(t)=a) equals one if player j has played action a in round t, and zero
otherwise. Actions played in a given round are discounted with time at rate γ ∈
[0,1]. When γ = 0, this model reduces to Cournot learning, where the belief
held in period t about action a is one if the action has been play in round t −
1, and zero otherwise, while when γ = 1, the model reduces to fictitious play,
where the belief about a given action corresponds to the frequency with which
this action has been played since round 1. The Cheung and Friedman model has
been found to perform well empirically to explain people’s behaviour in games.
Again, according to these empirical beliefs, players form conjectures only on the
basis of the history of their opponent’s actions, but they do not realize that their
own actions are likely to influence their opponent’s behaviour. In other words,
players regard their opponent’s behaviour as generated by an exogenous process
and, in doing so, they completely neglect strategic interactions. This assumption

10If players partly base their beliefs on the past history of their opponents’ play, then this com-
ponent will be correlated to both their beliefs in the previous and current rounds, and also to their
action in the previous round (because ai (t−1) obviously depends on player i’s beliefs in t− 1),
and one would find a positive correlation between current beliefs and previous action even if there
is no causal effect of the previous action on the current belief. Note that we do not assume that
players necessarily base their beliefs on the history of their opponents’ play, but rather allow for
the possibility of such a belief formation process.
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is at odds with the foundations of game theory. We now examine its validity in
our games.

We estimate the model of equation (1) at the individual level using the method
of minimum mean-squared error11 along the lines of Nyarko and Schotter (2002).
We are thus able to compute estimated empirical beliefs ˆ̃Ba

i (t) that can be inter-
preted as the largest part of the individual’s true beliefs Ba

i (t) that can be explained
by the past history of the opponents’ actions up to round t−1 under the Cheung-
Friedman hypothesis. We then compute D̂a

i (t), as the difference between stated
beliefs and estimated empirical beliefs in round t. We then proceed to examine
whether D̂a

i (t) can be explained, in part, by the action taken by player i in the pre-
vious round — ai(t− 1). Specifically, we estimate the following random-effects
model:12

DX
i (t) = β0 +β1B̃X

i (t)+β21(ai(t−1)=X) +νi + εi,t (2)

The variable B̃X
i (t) serves as a control variable as the size of the difference

DX
i (t) will also depend on the value of player i’s empirical beliefs since a high

empirical belief leaves less room for a large positive DX
i (t) than low empirical

beliefs. Now consider β2. If β2 > 0, then i believes that his opponent is more
likely to best respond to the previous action than implied by γ-weighted beliefs
and we say that subject i believes that his opponent is capable of learning. Hence
this indicates that players (at least partly) base their actions on motivations beyond
those suggested by classical adaptive proxies. For this reason, we will refer to it
as a sophistication bias.

Our estimation results of Equation (2) for the variable of interest 1(ai(t−1)=X)
are collected in Table 4, for all players and separating by type of players (row or
column) respectively. We always find a significantly positive parameter β2. The
results indicate that players are in fact more likely to think that their opponent will
choose a best response to their previous action than implied by usual proxies for
empirical beliefs.13 In other words, subjects realize that their opponents can learn,
which is necessary for teaching to even be possible. This shows that players take
strategic interactions into account and form beliefs in a more sophisticated way
than the adaptive way postulated by usual proxies. Therefore we have highlighted
a sophistication bias in classical proxies used to describe players’ belief-formation
process.

When separating by type of players, all coefficients β2 remain positive and
significant, indicating that our finding is robust in our games as both types of
players take strategic interactions into account when forming their beliefs. In

11That is, our estimator is the solution to minγ∈[0,1] ∑a,t
(
Ba

i (t)− B̃a
i (t)

)2.
12By complementarity, results are the same for action Y .
13β1, the coefficient of the control variable is consistently always significantly negative as, again,

a higher level of estimated beliefs leaves less room for large positive differences.
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Table 4: Random-Effects Panel Regression: The Sophistication Bias

TPh/TC` TPh/TCh TP`/TC` TP`/TCh

All 0.149∗∗∗
(0.032)

0.210∗∗∗
(0.041)

0.137∗∗∗
(0.042)

0.187∗∗∗
(0.062)

Row players 0.138∗∗∗
(0.046)

0.230∗∗∗
(0.068)

0.167∗∗
(0.065)

0.173∗
(0.091)

Column players 0.163∗∗∗
(0.045)

0.195∗∗∗
(0.049)

0.098∗∗
(0.048)

0.199∗∗
(0.086)

∗ 10% level of significance; ∗∗ 5% level of significance; ∗∗∗ 1% level of signif-
icance
Robust standard errors in parentheses. The number of individuals is given in
Table 1, each individual played 20 periods.

sum, these results emphasize the fact that subjects believe that their past actions
influence their opponent’s current decisions — i.e., there is a sophistication bias.
This finding is particularly interesting for our purpose since it means that a crucial
pre-condition for successful teaching is met: players realize that their opponent
is capable of learning. Of course, the presence of a sophistication bias does not
allow us to conclude that subjects actually teach their opponent. In the next sec-
tion, we show that, in addition to having a more sophisticated belief-formation
process, subjects’ action choices are also considerably more sophisticated than
traditionally postulated.

5 Over response & Teaching
The previous section confirmed that in all our games there is scope for teaching.
The question we address now is whether subjects, particularly row players given
their stronger incentives, take advantage of this scope and actually attempt to teach
their way to a beneficial (Pareto optimal) outcome.

In the belief-learning literature, players are assumed to take a stochastic best
response to their beliefs. Under this view, choices which are not a best response
to beliefs are called errors. However, if agents are teaching, then they are neces-
sarily taking a statistically sub-optimal action with the hope that a more beneficial
outcome will emerge later. In order to capture this, in Table 5 we categorise the
players’ choices according to whether or not they were a best response to stated
beliefs. Say that a player “over responds to X” whenever he chooses X despite the
fact that Y is a best-response to his stated beliefs. Similarly, say that a player “over
responds to Y ” whenever he chooses Y despite the fact that X is a best-response to
his stated beliefs. If our subjects are teaching in these games, we would expect the
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players to over respond to X much more frequently than they over respond to Y .
Indeed, this is precisely what we see: as can be seen from Table 5, in no case were
more than 6% of the decisions choices of Y when X was a best response, while X
was played when Y was a best response for at least 17% of the decisions and often
for over 20% of the decisions (this is seen by looking at the off-diagonals of the
table). A bit more formally, if we take each subject-pair’s 20 period history as an
independent observation, we can carry out a two-sided t-test of equality of means.
For row players in the game TP`/TCh (i.e. the game which exhibits the weakest
teaching incentives) the p-value of this test is only 0.021, while in all other cases,
p� 0.01.14

Table 5: Frequency of Choice Behaviour Categorised By Best Response
ROW PLAYERS

TPh/TC` TPh/TCh
BR = X BR = Y

X 0.25 0.38
Y 0.02 0.36

BR = X BR = Y
X 0.31 0.26
Y 0.01 0.42

TP`/TC` TP`/TCh
BR = X BR = Y

X 0.37 0.23
Y 0.04 0.36

BR = X BR = Y
X 0.29 0.17
Y 0.06 0.48

COLUMN PLAYERS

TPh/TC` TPh/TCh
BR = X BR = Y

X 0.27 0.24
Y 0.04 0.45

BR = X BR = Y
X 0.37 0.19
Y 0.02 0.43

TP`/TC` TP`/TCh
BR = X BR = Y

X 0.39 0.18
Y 0.03 0.40

BR = X BR = Y
X 0.29 0.20
Y 0.04 0.47

The numbers in each matrix should sum to 1, modulo rounding.

It is hard to interpret such strong tendencies to choose X even when Y is a
best response as errors since it would mean that our subjects are making quite
costly errors with considerable frequency. Moreover, the comparative statics are

14In order to remain conservative, when players were indifferent between their two actions and
finally chose X , we regarded this action as a best response and not as an over response. It turns
out that whether we consider this as a best response or an over response does not alter our results
as these cases are relatively rare occurrences.
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consistent with our earlier hypotheses. When the teaching premium is low and the
teaching cost is high, the difference in over response behaviour is much weaker,
though the difference is still statistically significant. In contrast, when the teaching
incentives are higher, Table 5 shows that our subjects choose X more frequently
when Y is a best response than the converse.

As we said in Section 2, we purposely gave the column players very weak
incentives to teach, while giving the row players stronger incentives to teach.
Therefore, if our conjectures are correct, it should be the case that row players
over respond to X more frequently than do column players. Indeed, when teach-
ing incentives are highest, this is the case. In the game TPh/TC`, a two-sided t-test
of the null hypothesis that row and column players over respond to X with the
same frequency is rejected (z = 2.25, p = 0.03). When teaching incentives are
weaker, we can never reject the same hypothesis (in all cases, p > 0.2).

Finally, it should be the case that, at the very least, row players teach more
in the game TPh/TC`, while there should be no significant difference in teaching
behaviour across games for the column players. This turns out to be the case.
In Table 6, which provides the t-statistics for every two-sample test that subjects
in one game choose X when Y is a best response with the same frequency as in
another game. A positive value in a given cell indicates that the subjects in the
game along the row chose X when Y is a best response more frequently than sub-
jects in the game along the column, and vice-versa for negative t-statistics. As
the reader can see, row players in the game TPh/TC` chose X when Y was a best
response significantly more frequently than did subjects in all other games. This
result reinforces our belief that these are not errors that we are picking up, but
rather the deliberate attempt of row players to teach their way to the Pareto ef-
ficient equilibrium. We also see that row players in the TPh/TCh game chose X
when Y was a best response significantly more frequently than did subjects in the
TP`/TCh game. In no other case is there a significant difference in behaviour for
row players. This suggests to us that the teaching premium is the more salient
variable when it comes to inducing teaching. Briefly, looking at the table for col-
umn players, we see that there are no significant differences in behaviour between
games.

Next observe that since teaching involves incurring a short-run cost for a long-
term gain, it should also be the case that teaching diminishes as the game pro-
gresses. Therefore, to the extent that our proxy (i.e., choosing X when Y is a best
response) captures teaching, we should see that such behaviour declines in later
rounds. In fact, this is exactly what happens in all games, though there are two
important points to make. First, in all treatments and for both row and column
players the frequency of over-response declines as the game proceeds. This is
likely due to some combination of learning and the fact that teaching becomes
less and less beneficial as the game proceeds. Second, row players in the game
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Table 6: Two-sample t-tests Across Games: Frequency of X Choices When Y is a
Best Response

ROW PLAYERS

TPh/TC` TPh/TCh TP`/TC` TP`/TCh
TPh/TC` - 1.75∗ 2.79∗∗∗ 4.19∗∗∗

TPh/TCh - - 0.83 2.03∗∗

TP`/TC` - - - 1.26
TP`/TCh - - - -

COLUMN PLAYERS

TPh/TC` TPh/TCh TP`/TC` TP`/TCh
TPh/TC` - 0.94 1.52 0.56
TPh/TCh - - 0.54 0.30
TP`/TC` - - - -0.79
TP`/TCh - - - -

∗ 10% level of significance; ∗∗ 5% level of significance; ∗∗∗ 1% level of significance
A positive (negative) t-statistic indicates that the subjects in the game along the row chose X when Y
was a best response more (less) frequently than did subjects in the game along the column. There are
respectively 17, 16, 19 and 15 row (column) players in games TPh/TC`, TPh/TCh, TP`/TC` and TP`/TCh.

TPh/TC`, retain a higher proportion of over responses throughout the game and
the proportion decreases more slowly. For row players in the game TPh/TC`, the
proportion of over-response declines most rapidly. For column players, there are
no noticeable differences across treatments.

Our results thus far provide support for our main hypothesis: subjects respond
in predicted ways to changing incentives to teach. When teaching is not costly
and/or the benefit to successful teaching is high, they teach. When teaching is
costly and/or the benefit is low, they do not. This is seen in both row and col-
umn players: generally, row players engage in what looks like strategic teaching
more frequently than do column players, which is natural since their incentives
were always larger. This also suggests that column players took a more passive
role and were more likely to be followers. Moreover, row players respond to the
changing teaching incentives across games. The dynamics of over response are
also consistent with teaching as it generally decreases with time and particularly
more slowly when teaching incentives are the highest.

6 A Demonstration of Far-sighted Behaviour
The previous sections have provided strong evidence of sophisticated behaviour
in our games. In this section, we attempt to track this pattern. To do so we write
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down and then estimate a descriptive model that aims to capture some prominent
behavioral traits. As will be seen, the results of this exercise generate comparative
statics which are consistent with our conjectures and our previous results.

6.1 Motivation
Like many others, we start from the premise that some players may engage in
far-sighted behavior.15 The theoretical literature on sophisticated decision makers
demonstrates that their presence may lead to Stackelberg payoffs for the sophisti-
cated player (Fudenberg and Levine, 1989), may lead to the risk dominant equilib-
rium (Ellison, 1997), may force cooperation (Jehiel, 2001) or may lead to efficient
outcomes — not necessarily equilibria (Mengel, 2008), among other results.

Using experimental data, Camerer et al (2002) has empirically documented
the existence of sophisticated agents who, through their own actions, try to ma-
nipulate the attractions of other players in order to maximise their long run payoff.
One important assumption in this model is that the sophisticated players know the
precise learning model used by the myopic players.16 It is this assumption that we
take issue with.

To see why, consider a sophisticated agent matched with a myopic player who
learns according to the Cheung and Friedman (1997) model of γ-weighted beliefs.
For ease of exposition, suppose that the myopic player perfectly best responds to
his beliefs and has an initial weighting (wX

0 ,wY
0 ) = (0,1), so that he believes with

probability 1 that the sophisticated player will choose action Y , making it a best
response to choose action Y as well. Next suppose that the sophisticated player
believes that the γ = 0.7 for the myopic player. Then, after one period of playing
X , the myopic player’s beliefs are approximately 0.588; after two periods they
are approximately 0.776 and after three periods they are approximately 0.813.
Therefore, given the sophisticated player’s beliefs about the learning parameter
of the myopic player, by the fourth period, the myopic player’s beliefs should be
such that X is a best response. How should the sophisticated player react if the
myopic player chose Y in the fourth period? In our view, he must reevaluate his
assumption that γ = 0.7 in favour of some new belief that γ is actually higher.17

15See, for example, Fudenberg and Levine (1998, Ch. 8), and Camerer et al (2002), among
others. See also the level-k/cognitive hierarchy models of Stahl and Wilson (1995), Costa-Gomes
et al (2001) and Camerer et al (2004).

16However, they may be mistaken about the proportion of sophisticated players in the popula-
tion.

17To be sure, the sophisticated agent may also reevaluate the assumption that the myopic player
perfectly best responds to his beliefs, or some combination of both. In general, updated beliefs
about the learning parameters of the myopic player would be towards less rationality and greater
sluggishness in beliefs.
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Given this new belief about γ , continued teaching may no longer be optimal. In-
deed, Ehrblatt et al (2008) document that teachers will often stop teaching if their
opponent is not responsive enough.

Given this motivation, we seek a model which captures the above intuition;
that is, some players may contemplate playing a teaching strategy to manipulate
the beliefs of their opponent. Throughout this process, teachers reevaluate the
speed at which their opponent learns, and decide whether continued teaching is
optimal. The model we present below is highly stylized, making a number of
simplifying assumptions, but is flexible enough to meet our requirements.

6.2 The model
The key features of the model are:

1. Sophisticated players see their opponent as a γ-weighted belief learner à la
Cheung and Friedman (1997) and contemplate playing a teaching strategy
in order to manipulate their opponent’s beliefs.

2. Sophisticated players maximize the discounted sum of expected payoffs.

3. Sophisticated players do not know the true value of γ of their opponent, but
update it based on the observed actions of their opponent.

The assumption that sophisticated players view their opponent as a γ-learner means
that we can restrict attention to two continuation strategies: repeatedly playing X
or repeatedly playing Y .18 Repeatedly playing X is done in an effort to push play
to the Pareto efficient equilibrium. We call this the teaching strategy.

For a ∈ {X ,Y}, let σa
i (t) = (ai(t), . . . ,ai(T )) = (a, . . . ,a) denote a continua-

tion strategy of the sophisticated player i at time t. Such a player seeks to maxi-
mize his expected intertemporal payoff. Thus, he chooses σa(t) to maximize:

Ei(σa(t)) = bX
i (t) ·πi(a,X)+(1−bX

i (t)) ·πi(a,Y )

+ ∑
T
u=t+1 δ u−t

∑z=X ,Y bz
i (u|σa(t)) ·πi(a,z),

(3)

where πi(a,a′) is player i’s payoff when he plays a and his opponent plays a′.
bz

i (t) is player i’s current (i.e. time t) belief about action z, z = X ,Y . bz
i (u|σa(t))

is player i’s “prospective belief” at time u, u > t, about action z conditional on
the fact that he adopts the continuation strategy σa(t) from t until the end of the

18This assumption is in the spirit of many cognitive hierarchy models in which players view
their opponent(s) as being less sophisticated than they themselves are and is also well documented
in the literature on overconfidence. See, among others, Roll (1984), Camerer and Lovallo (1999),
Benabou and Tirole (2002) and Camerer et al (2004).
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game. δ is the usual discount factor, and observe that if δ = 0, then player i is
actually myopic.

δ is a parameter to be estimated. Therefore, it remains to specify how current
and prospective beliefs are formed and how player i maps expected payoffs into
actions. We turn to this now.

The Opponent’s Beliefs. As indicated above, the sophisticated player i regards
his opponent as a γ-learner but does not know the true value of γ . We assume that
player i updates the value of the inertia parameter γ̂ j(t) he perceives on the basis
of the information he gathered at time t.19 The empirical rule we adopt to describe
players’ updating process of γ̂ j(t) is the following:

γ̂ j(t) =

{
0 if t ≤ 2

γ̂ j(t−1)+∑
t
τ=31(ai(τ−2)=a,a j(τ−1)6=a∗)

t otherwise

}
(4)

In words, players initially see their opponent as being very responsive, but update
the perceived responsiveness each period. More precisely, the numerator of γ̂ j(t)
counts the number of times the opponent ( j) has not best responded to player i’s
previous action. The denominator simply serves as a normalization factor to en-
sure that γ̂ j(t) lies between 0 and 1. Each time the opponent does not best respond
to the previous action, the inertia parameter is reevaluated upward, while each
time the opponent does best respond to the previous action, the inertia parameter
is reevaluated downwards. We assume, for simplicity that γ̂ j(0) = 0, and note that
the results do not depend materially on the initial value. We also assume that the
sophisticated player does not anticipate in period t that he will update γ in period
t +1 based on the outcome that period, but see Remark 2 for a brief discussion.

Computing current and prospective beliefs of the myopic player, as perceived
by the sophisticated player in period t, is a simple matter. In particular, current
beliefs are given by:

b̂a
j(t) =

1(ai(t−1)=a) +∑
t−2
s=1
[
γ̂ j(t)

]s
1(ai(s)=a)

1+∑
t−2
s=1
[
γ̂ j(t)

]s , (5)

while prospective beliefs at time u > t, conditional on the continuation strategy
σA(t) are given by:

b̂a
j(u|σA(t)) =

1+∑
u−2
s=t
[
γ̂ j(t)

]s +∑
t−1
s=1
[
γ̂ j(t)

]s
1(ai(s)=a)

1+∑
u−2
s=1
[
γ̂ j(t)

]s . (6)

19Henceforth, all the parameters players perceive about their opponent’s behaviour will be de-
noted with a hat.
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Player i’s Beliefs In our experimental sessions, we elicited each player’s current
period belief, therefore, it remains to detail how players form their prospective
beliefs. Given his estimation of his opponent’s (current and prospective) beliefs,
player i can estimate player j’s expected payoff induced by playing action k at
time u≥ t given the continuation strategy σa(t), a = X ,Y :

Êk
j (u|σa(t)) = ∑

z=X ,Y
b̂z

j(u|σ
a(t))π j(k,z) (7)

To keep things simple, we will assume that player i believes that his opponent
will perfectly best respond in each period to his beliefs. Therefore, player i’s
prospective beliefs can be written as:

bk
i (u) =


1 if k = argmaxk′∑z=X ,Y b̂z

j(u|σa(t))π j(k′,z)
0 if k 6∈ argmaxk′∑z=X ,Y b̂z

j(u|σa(t))π j(k′,z)
0.5 otherwise

 (8)

Player i’s choice probabilities We assume that player i stochastically best re-
sponds given his expected intertemporal payoff Ei(σX(t)). Choice probabilities
then take the following logistic form:

PX
i (t) =

exp
[
λ
[
Ei(σX(t))−Ei(σY (t))

]]
1+ exp [λ [Ei(σX(t))−Ei(σY (t))]]

. (9)

Obviously we have PY
i (t) = 1−PX

i (t), where Pa
i (t) is player i’s propensity to play

action a at time t, with λ representing players’ sensitivity to expected payoffs.
From (9), we can write the likelihood function for individual i at time t as:

lit = PX
i (t)1(ai(t)=X)PY

i (t)1(ai(t)=Y). (10)

Aggregating over individuals and time periods gives us the full likelihood func-
tion, which can then be maximized to obtain estimates for λ and δ .

When δ = 0, our model reduces to that of Nyarko and Schotter (2002).20

We will refer to this as the myopic learning model. When δ > 0, we call it the
sophisticated learning model.

Remark 2 (Discussion of the model.) Notice that, while sophisticated players
may be far-sighted, they are still not fully rational. In particular, they use an
adaptive rule to update the perceived degree of responsiveness of their opponent.
Moreover, we have assumed that players do not anticipate in period t that in pe-
riod t +1 they will have an updated γ based on what happened in period t. While

20This follows since we use the elicited stage-game beliefs in (3).
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one could add perfect foresight into the model it is not clear that this would ap-
preciably affect the qualitative results. With some probability, γ will be updated
downwards, making continued teaching more attractive, while with complemen-
tary probability, γ will be updated upwards, making continued teaching less at-
tractive. It is not clear whether, in expectation, teaching will be more or less
attractive. Depending on which way the expectation leads, the critical value of
δ required for teaching to be profitable will likely change, but the essence of the
model remains intact.

We have also assumed that the sophisticated player believes his opponent per-
fectly best responds to her own beliefs. This is made to allow us to focus on
the adjustment of γ . The model could be extended to incorporate stochastic best
response by the γ-learner, but doing so would greatly complicate the updating
procedure since now the sophisticated player would need to jointly update γ and
λ in each period. Such a model would be extremely computationally demanding
and is beyond the scope of the current paper.

6.3 Results
As stated in the above discussion, our model extends the myopic model with the
introduction of sophistication via a forward-looking component in players’ choice
probabilities. This forward-looking component is formalized by the discounted
future expected payoffs in the RHS of (3). We estimate the sophisticated learning
model for both row and column players. Given that column players had very weak
incentive to teach, we conjecture that the sophisticated learning model should not
greatly improve the fit above and beyond the myopic model. On the other hand,
for row players — particularly when teaching incentives are high — we expect
the fit to improve substantially. Our estimation results are reported in Table 7.21

We first examine the point estimates of δ . A positive δ̂ indicates that future
expected payoffs matter for players and that they take them into account when
choosing their current actions. First, look at the results for row players. As can
be seen, in three of the four games, we estimate that δ is significantly positive.
The one game where we cannot reject the null hypothesis is TP`/TCh, and recall
that this treatment has the weakest teaching incentives. Therefore, except when
teaching incentives are weakest, row players incorporate future payoffs into their
current decision. Turn now to column players. While δ turns out to be signif-
icantly positive in only one game, the point estimates are sizeable. We suspect
that the insignificance of δ for column players in most games and for row play-
ers in game TP`/TCh comes from the fact that we consistently observe less over
responses to X (the actions on which δ is identified) for those players, leading to

21In all our estimations, all standards errors are clustered by individuals.
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Table 7: Estimations for each type in each game
Myopic Model Sophisticated-learning Model

Row Players
TPh/TC` TPh/TCh TP`/TC` TP`/TCh TPh/TC` TPh/TCh TP`/TC` TP`/TCh

λ 0.215∗∗
(0.086)

0.192∗∗∗
(0.036)

0.555∗∗∗
(0.138)

0.259∗∗∗
(0.043)

0.394∗∗∗
(0.089)

0.224∗∗∗
(0.031)

0.581∗∗∗
(0.108)

0.231∗∗∗
(0.051)

δ - - - - 0.114∗∗∗
(0.027)

0.187∗∗∗
(0.034)

0.228∗∗∗
(0.046)

0.224
(0.235)

N 340 320 380 300 340 320 380 300
LL -226.21 -181.32 -215.60 -141.96 -190.12 -151.52 -182.61 -138.35
AIC 454.42 364.64 433.20 285.92 384.22 307.04 369.23 280.71
BIC 458.25 368.41 437.14 289.63 381.89 314.57 377.11 288.12

Column Players
TPh/TC` TPh/TCh TP`/TC` TP`/TCh TPh/TC` TPh/TCh TP`/TC` TP`/TCh

λ 0.070∗∗∗
(0.019)

0.112∗∗∗
(0.020)

0.096∗∗∗
(0.025)

0.073∗∗∗
(0.013)

0.051∗∗∗
(0.016)

0.112∗∗∗
(0.020)

0.061∗∗∗
(0.018)

0.047∗
(0.026)

δ - - - - 0.483
(0.333)

0
(0)

0.569∗∗
(0.291)

0.561
(0.726)

N 340 320 380 300 340 320 380 300
LL -199.73 -151.37 -192.13 -160.17 -194.10 -151.37 -190.32 -159.93
AIC 401.46 304.74 386.26 322.34 392.20 306.74 384.63 323.86
BIC 405.29 308.57 390.30 326.04 399.86 314.28 392.51 331.27

Standard errors in parentheses. Sig. lev.: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
NB: For δ , tests are one-sided tests of H0 : δ = 0.
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larger standard deviations for δ̂ . Student t-tests show that the estimated δ s are
not different between the different sub-samples. This is not surprising since play-
ers randomly assigned to games and types should not be expected to weight future
payoffs in different ways as δ is not payoff-sensitive. Obviously, it does not imply
that there should not be differences in teaching behaviour across games. Indeed,
for a fixed delta, the stronger (weaker) are the teaching incentives, the more (less)
likely we are to observe teaching. We conclude that players do take future payoffs
into account when choosing their current actions, although high teaching costs
can dominate the expected future payoff gains.

Before examining the other parameters, we pause to discuss whether the addi-
tion of the forward looking component (i.e., δ ) leads to an improved fit. Of course,
since the sophisticated-learning model nests the myopic model, it must be that the
log-likelihood weakly increases. To account for the fact that the sophisticated-
learning model has an extra parameter, we therefore compare the Akaike and
Bayesian Information Criteria (AIC and BIC), which are also reported in Table
7. As can be seen, for row players, in all four treatments, the AIC and BIC are
lower in the sophisticated-learning model than in the myopic model, indicating a
better fit even after accounting for the extra parameter. For column players, both
criteria indicate that the sophisticated-learning model gives a better fit only for
the treatment TPh/TC`, and the AIC also gives a slight lead to the SL model in
treatment TP`/TC`.

Remark 3 (Mean Squared Deviation.) For each model, we can also calculate
the mean squared deviation to get another metric of how the estimated choice
probabilities match the data. Such an analysis is problematic because it does not
compensate for the fact that the sophisticated learning model contains an addi-
tional parameter and as such, must lead to a lower MSD. However, it has the
advantage that we can conduct statistical tests. The results are discussed in an
online appendix. Stated briefly, the analysis shows that in games where teach-
ing incentives are relatively strong, the MSD for row players are significantly
lower when we use our sophisticated-learning model that when we use the my-
opic model. When teaching incentives are weaker, we can never reject the hypoth-
esis of equality of MSD, this holds for column players across all games and for
row players in the game TP`/TCh, which had the weakest incentives for teaching.
Hence, introducing a forward-looking component into the myopic model helps to
track the behaviour of players who are given high incentives to teach and who,
according to the our earlier analysis, have the highest propensity to do so.

Turn now to a deeper analysis and comparison of our parameter estimates.
First, observe that the estimate of λ for row players is marginally higher in the
sophisticated-learning model for the three games where δ is significantly positive,
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suggesting that at least part of what the myopic model picks up as mistakes are
more properly viewed as far-sighted, profit maximizing behaviour. On the other
hand, for column players, the exact opposite is found with λ being estimated lower
in the sophisticated-learning model.

Next observe that for both the sophisticated-learning model and the myopic
model, the estimate of λ is noticeably higher for row players than for column
players. Given λ , a belief, b, and teaching cost, θ , the probability a decision
maker takes action X can be written as:

p(b,λ ,θ) =
exp(λθ(b−0.8))

1+ exp(λθ(b−0.8))
.

Recall then from Table 1 that θ ∈ {5,15} for row players and θ = 40 for column
players. Therefore, in order to get the same choice probability for the same belief,
we must have λ larger for row players than for column players. Therefore, the
overall sensitivity to payoff differences is really θλ . Computing this for the my-
opic model and we actually have that θλ is larger for column players than for row
players, except in the treatment TP`/TCh. For the sophisticated-learning model,
the comparison is reversed with θλ higher for row players, except in treatment
TPh/TC`, where θλ remains slightly smaller. Both of these findings reinforce our
view that it is row players who are actually teaching. In the myopic model, since
row players are teaching, it looks like they are making more mistakes, hence the
sensitivity to payoff differences is smaller. However, once long run considerations
are accounted for in the sophisticated-learning model, the row players’ behaviour
no longer looks like mistakes, but instead profit maximization, hence sensitivity
increases.

7 Conclusion
In the past decade, several learning models have been devised to describe how
people play games. Still, an almost universal assumption in all these models is
that players regard their opponents’ behaviour as generated by an exogenous pro-
cess and do not realize that they could influence it via their actions. A few recent
studies have highlighted the limits of this assumption in various circumstances.
More precisely, players might be more sophisticated and attempt to teach their op-
ponent to play a particular action (which is often a Nash equilibrium). This paper
has tried to emphasize the determinants of such a strategic behaviour and to show
that subjects are often responsive to the incentives that they are given to engage
in far-sighted behaviour. Our results have shown the existence of such sophisti-
cation in several ways. First, we demonstrated a sophistication bias in players’
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belief-formation process, which indicates that players take long-run strategic con-
siderations into account. This paves the way for the use of strategic teaching we
described in a following step. We found that, particularly when teaching incen-
tives are high (i.e., when teaching is both relatively safe and beneficial), players
profitably engage in strategic teaching to drive play to the efficient Nash equilib-
rium. More precisely, they are much more likely to play their part of the Pareto
efficient Nash equilibrium, despite it not being a best response to their static be-
liefs. Over time, as their opponents learn, this pushes play to the efficient Nash
equilibrium. When we made teaching more difficult (by raising the cost of teach-
ing and/or lowering the potential benefit to teaching), we showed that players are
much less likely to take long-run considerations into account. In the latter cases,
particularly when teaching incentives are the lowest, coordination failure is more
prominent.

¿From these results, it is then natural to propose a model that could account
for players’ behaviour in a unified way across all our games. To address this
issue, we extended a model of decision making by introducing a forward-looking
component to provide a more accurate description of players using a long-run
strategy. Our results showed that this extended model significantly improved the
fit for teachers and, by doing so, it also provided a unifying framework to describe
players’ behaviour in all our games.
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