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Abstract

This paper investigates the social planner’s solution in the Uzawa-Lucas model
with endogenous labor. In absence of multiple equilibria, the suboptimality of the
equilibrium path conjectured by Lucas is confirmed. When indeterminacy occurs,
however, we makes use of optimal control relaxed problems to prove the absence
of optimal trajectory and the near-optimality of sunspot equilibria. In such cases,
the pseudo-optimal solutions are chattering and only sunspot equilibria may mimic
these trajectories whose criterion functionals approximate the supremum of the
relaxed problem. We find that this property occurs for empirically plausible values
of the parameters.
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1 Introduction

Uzawa (1965) and Lucas (1988) introduce investment in human capital in the
traditional neoclassical growth model to render the transitional dynamics im-
plied by the theory consistent with the long-run properties of the U.S. economy
and explain the differences across countries in the economic development.

By incorporating a labor-leisure tradeoff and endogenous labor, Benhabib and
Perli (1994) find that multiple equilibria exist for empirically very plausible pa-
rameters and explore an alternative explanation to the observed differences,
namely indeterminacy of equilibria or equivalently self-fulfilling prophecies,
rather than differences in technology or preferences. This model allows for the
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possibility that human capital generates a positive externality in the produc-
tion of final goods or in the production of human capital itself. The original
Lucas model provides some evidence from U.S. data for the 1900-57 period
in support of the existence of this externality. As shown by Einarsson and
Marquis (1996), a positive externality is also required in order for the model
to be compatible with the postwar U.S. data.

Lucas does not solve the model completely (especially, the sufficient conditions
are not checked) but conjectures that in presence of productive externalities
the economy converges to a suboptimal balanced growth path (BGP) where
the speed of the human capital accumulation is lower than the efficient speed.
The main concern of this paper is to establish under which conditions Lucas’
conjecture proves to be true and compare them to the empirical data. It will
be shown in the model with endogenous labor that the conjecture is only
validated when indeterminacy does not occur.

However, in case of indeterminacy an optimal BGP path does not exist but a
sequence of “chattering” consumption/investment plans converges to a supre-
mum. This supremum is not a feasible trajectory of the original problem but
is the optimum of an artificially convexified problem, usually denoted by gen-
eralized or relaxed problem. 1 This problem can be viewed as a limiting case
of the original problem since the difference of welfare between the optimal
relaxed solution and some feasible paths can be made uniformly as small as
we wish. 2 For a given margin of error, we are then able to determine a set
of pseudo-optimal solutions whose criterion functionals have approximately
the same value as the supremum. It is worth noting that for some plausible
parameter values, sunspot equilibria are able to mimic the pseudo-optimal
trajectories, this is especially the case for the calibrated values used by Lucas.
We call this property “near-optimality”.

The remainder of this paper is organized as follows. Section 2 describes the
model setup with endogenous labor. Section 3 defines both the social plan-
ner’s program and the associated relaxed problem. A relaxed optimal solution
is proved to exist. In section 4, we show that although there is no optimal tra-
jectory for the original program, the optimal relaxed trajectory can be approx-
imated by a sequence of admissible trajectories in the non-relaxed problem.
Section 5 challenges Lucas’s conjecture on the suboptimality of the (decentral-
ized) equilibrium path and shows that it proves to be false when indeterminacy
occurs and for empirically plausible parameter values. Section 6 concludes.

1 Relaxed systems have been extensively studied, for instance by Gamkrelidze
(1965), and more recently by Cesari (1983).
2 It must be noticed, however, that uniform convergence applies only on compact
subsets of R+.
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2 The model

The framework is a slightly modified version of Benhabib and Perli (1994),
generalizing the standard models of Uzawa (1965) and Lucas (1988) by inte-
grating a labor-leisure tradeoff.

For simplicity, we investigate a model without physical capital. 3 Consumption
goods C are then produced with human capital only, according to the following
technology: C = (uh)α, where u ∈ [umin, 1] ⊂ [0, 1] is the share of human
capital allocated to the sector of consumption goods. 4 Unlike the original
Uzawa-Lucas model and in absence of conclusive estimates on the degree of
returns to scale (see e.g. Basu and Fernald (1997)), no externality is imposed
in the production function. 5

The economy is populated by a unit measure of identical infinitely lived con-
sumers. They produce human capital with labor and a share 1− u of human
capital, using a constant returns to scale technology:

ḣ = δA[(1− u)h]θL1−θ δ > 0, θ ∈ (0, 1)

A = h̄1−θ(1− ū)θγ1L̄γ2(1−θ) γ1, γ2 ≥ 0,
(1)

where A is a productive externality, and ū, h̄ and L̄ denote the average
economy-wide levels of respectively the share u, human capital h and labor
L. In a symmetric equilibrium u = ū, h = h̄ and L = L̄, the aggregate law of
motion of human capital becomes:

ḣ = δh(1− u)θ(1+γ1)L(1−θ)(1+γ2), (2)

which obviously induces increasing returns to scale in the production of hu-
man capital. It is still unclear in the literature whether human capital exhibits
constant marginal returns to scale or not. 6 This is a critical assumption for

3 As shown in Benhabib and Perli (1994), this assumption is not decisive for inde-
terminacy but greatly facilitates the derivation of analytic results.
4 The assumption that umin > 0 insures that the minimum level of consumption
is always strictly positive. This does not alter the dynamics of the model as long
as umin is chosen sufficiently close to zero but drastically simplify the exposition of
the different theorems we use in the paper.
5 It is well known since Benhabib and Farmer (1994) that productive externalities
favors indeterminacy.
6 Analyzing the postwar experience of the OECD, Jones (1995) provides some ev-
idence against the prediction of “scale effects” induced by the endogenous growth
models that an increase in research effort should lead to more rapid growth, sug-
gesting the existence of decreasing returns on human capital in the aggregate level
in our setup.
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endogenous growth in the Lucas model. We rather impose private decreasing
returns on human capital but maintain a sustained economic growth by im-
posing an externality on both human capital and labor. Marginal constant
returns on human capital are then preserved at the aggregate level. 7

The representative consumer, owner of human capital, is endowed with one
unit of time (L ≤ 1) and maximizes:

max
u,C,L

∞∫

0

U(C(t), L(t))e−ρtdt, (3)

with:

U(C, L) ≡ log C − L1+χ

1 + χ
,

where ρ > 0 denotes the discount rate.

The Hamiltonian associated to the problem of the pseudo-social planner is:

H(L, u, h, λ) = α log(uh)− L1+χ

1 + χ
+ λ

[
A[(1− u)h]θL1−θ

]
,

and the first-order conditions for an interior solution are:

∂H

∂L
(L, u, h, λ) = 0 ⇐⇒ α(1− u)

θu
= λḣ (4)

∂H

∂u
(L, u, h, λ) = 0 ⇐⇒ L1+χ

1− θ
= λḣ (5)

∂H

∂h
(L, u, h, λ) =−λ̇− ρλ ⇐⇒ λ̇

λ
= ρ− α

λh
− θ

ḣ

h
, (6)

together with the law of motion of human capital, equation (2), and the
transversality condition:

lim
t→∞λ(t)h(t)e−ρt = 0.

A trajectory satisfying conditions (4) to (6) and the transversality condition
will be called an equilibrium. 8 By contrast, a solution of the social planner’s

7 The empirical plausibility of diminishing returns at the individual level but con-
stant returns at the aggregate level has been argued by Lucas himself in his original
paper. However, by contrast with Lucas (1988) where θ(1+γ1) = 1, the assumption
of diminishing returns on 1− u is supported by Gong et al. (2004)’s estimates. We
thus decide not to impose any specific value to the parameter γ1.
8 The concavity of the problem respect to the controls and the state variable jointly
insures that the second-order conditions hold.
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program (see infra) will be said efficient or optimal.

In appendices 7.1 and 7.2, we prove that the dynamics of model reduces to a
single difference equation:

u̇

u
=

1− u

1− φ− ζu


ρ + δ(1− θ − u)(1− u)ζ−1

(
α(1− θ)

θ

1− u

u

)φ

 ,

where ζ = θ(1 + γ1) and φ ≡ (1−θ)(1+γ2)
1+χ

, with a unique balanced growth path
when the externality is low enough, i.e. φ+ζ < 1, and generally two equilibria
otherwise.

This latter pattern exhibits indeterminacy: either a local indeterminacy when
a continuum of equilibrium paths appears in the neighborhood of the lower
balanced growth path (which is topologically stable), or global indeterminacy
when both balanced growth paths are locally determinate (that is, in our
framework, when they are repealing). Agents may then regularly jump from
one BGP to the other, only modifying the allocation of human capital across
sector.

In the next two sections, we will assume that the condition for indeterminacy,
φ + ζ > 1, is satisfied.

3 Relaxed and non-relaxed optimization problem

Assume a central planner maximizing the representative consumer’s utility (3)
subject to the aggregate law of motion of human capital, equation (2), with
the control variable restriction:

x(t) ≡ (L(t), u(t)) ∈ Υ ≡ [0, 1]× [umin, 1].

Since Mangasarian (1966), it is well know that the necessary conditions are
also sufficient for a global maximum if the maximand (here the utility func-
tion) and the constraint are both differentiable and jointly concave in the
variables (L, u, h) and if the costate λ(t) > 0 at any period. The traditional
sufficiency condition does not hold here since the law of motion of human cap-
ital is no longer jointly concave in L, u and h (the production function being
quasi-concave). Arrow and Kurz (1970) provide a generalized sufficiency con-
dition for optimality that can be used in some problems where the traditional
concavity assumptions do not hold. 9 It can be shown that this theorem does

9 For a formal proof of the theorem, see Seierstad and Sydsaester (1977) or Seierstad
and Sydsaester (1987), theorems (2.5) and (3.14).
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not apply in our setup when indeterminacy occurs. 10

To solve the program, we then introduce a more general problem in which
convex combinations of the initial production set vectors are authorized. More
precisely: while in the original problem, for any couple x ∈ Υ and for a pre-
determined stock of capital h, the representative firm can only produce up to
(1−u)ζhLφ(1+χ) units of output, we now extend the production set and consider

that the firm is able to produce π(1− u1)
ζhL

φ(1+χ)
1 + (1− π)(1− u2)

ζhL
φ(1+χ)
2

units of output with the vector of inputs πx1 + (1 − π)x2, for any π ∈ [0, 1]
and any (x1, x2) ∈ Υ2. We then move to a production set satisfying the defini-
tion of a convex set and make the optimization problem easier. This method
of relaxed or generalized problem gave raise to an extended literature in the
field of mathematics, presented by Cesari (1983) for the most basic results.
Once the initial production set has been “convexified” by adding its convex
hull to the set of feasible allocations, the relaxed problem of the social planner
becomes: 11

max
v

∫ ∞

0

2∑

i=1

pi(t)U(Ci(t), Li(t))e
−ρtdt, (7)

subject to:

ḣ(t) =
2∑

i=1

pi(t)(1− ui(t))
ζh(t)Li(t)

φ(1+χ) (8)

with the control variable restrictions:

v(t) ≡ (x1(t), x2(t), p1(t), p2(t)) ∈ V ≡ Υ2 × [0, 1]2 (9)

p1(t) + p2(t) = 1. (10)

Since the convexity of the control set is so easily obtained for relaxed prob-
lems, the standard existence theorems necessarily apply and the following
proposition can be shown:

Proposition 1 There exists an optimal pair (K∗(t), v∗(t)) to the optimization
problem (7)-(10).

10 The maximized Hamiltonian we define further is only piecewise convex but not
globally convex when the condition for indeterminacy holds. Derivations are avail-
able from the author upon request.
11 When the objective function is not concave, it is necessary to convexify the con-
trol set to prove the existence of a solution in the relaxed maximization problem.
In our model, the utility function is already concave: this procedure is not neces-
sary. However, we express the relaxed problem in the more general way to fit the
formulation usually adopted by the relevant literature. An alternative formulation
consists in maximizing

∫∞
0 U(p1(t)x1(t)+p2(t)x2(t))e−ρtdt subject to (8). It can be

proved that the optimal solution is a chattering corner solution: the (limit) value of
the maximand will then be the same whatever objective function we chose.
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Proof. This is an application of the Filippov-Cesari theorem. 12 See Appendix
7.3.

While the sufficiency conditions of the standard theorems fail to apply in
the non-relaxed problem when indeterminacy occurs, an optimal trajectory
emerges from the relaxed problem and can be used as a benchmark for the
non-relaxed problem. In the next section, it will be seen in particular that
there exists in the original optimization problem a sequence of trajectories
whose criterion functional converges to the benchmark’s optimal welfare. This
convergence will be used to prove the absence of an optimal solution in the
non-relaxed problem.

4 Pseudo-optimal trajectories

The following proposition establishes the possible approximation of relaxed
trajectories, whether optimal or not, by ordinary trajectories of the initial
problem.

Proposition 2 Let {h∗(t), v∗(t)} be an admissible pair for the relaxed optimal
control problem. Then, there exists a sequence {hi(t), xi(t)}∞i=1 of admissible
pairs for the initial non-relaxed problem such that the sequence of admissi-
ble trajectories {hi(t)} converges uniformly to h∗(t) on compact subsets of
[0, +∞).

Proof. This is an extension by Carlson (1993), theorem 4.2, of Berkovitz
(1974) and Cesari (1983) to the case of infinite-horizon problems. See appendix
7.4 for the application.

The proposition above includes the uniform convergence of a sequence of ap-
proximate non-relaxed trajectories to the optimal relaxed solution when maxi-
mizing on [0, T ] ⊂ [0, +∞). In other words, the relaxed optimal solution is the
limit of a sequence of suboptimal trajectories for any finite interval problem
defined on [0, T ]. It is assuredly possible to enlarge the compact set as much
as possible to get a sequence of trajectories whose limiting criterion functional
has the same value as the supremum of the relaxed problem (7)-(10) as the
upper bound T tends to infinity.

Furthermore, it is worth noting that the set of admissible trajectories for the
initial problem can be expressed as a subset of degenerated trajectories in
the relaxed problem, with pi(t) = 1 and pj(t) = 0, i, j = {1, 2} and j 6= i.

12 For a complete proof of the theorem can be found in Cesari (1983), chapter 9.
The simplified version presented in this paper is due to Seierstad and Sydsaester
(1987), theorem 2.8.
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As a consequence, the supremum of the relaxed problem consists of an upper
bound for welfare in the non-relaxed problem. And an optimal non-relaxed
trajectory, if any, performs at the very most as good as the optimal relaxed
trajectory.

In case of indeterminacy, as shown in appendix 7.2, the former trajectory must
exhibit an alternation of periods of full labor effort and periods of zero labor
effort. The argument can be proved by reducing it to absurdity: assume the
optimal non-relaxed trajectory is an “interior” solution and embodies quanti-
ties of labor L ∈ (0, 1). For optimal values of the state and costate variables,
by choosing either L = 0 or L = 1 we can increase the criterion functional.
Then the trajectories with 0 < L < 1 cannot be optimal.

Can this chattering non-relaxed trajectory constitute the optimal solution of
the relaxed problem?

Proposition 3 The optimal relaxed solution cannot be a degenerated trajec-
tory when indeterminacy occurs.

Proof. See appendix 7.5.

The immediate consequence of propositions 2 and 3 is that there is no optimal
trajectory in the original problem since for any admissible trajectory approx-
imating the optimal relaxed solution one may select another trajectory whose
criterion functional gets closer to the supremum: actually, the sequence of
non-relaxed trajectories never reaches the supremum. The intuition for these
findings relies on the welfare improvement properties of the chattering solu-
tions. By switching from periods of zero labor effort to periods of full labor
effort, the social planner may manage to mimic more or less faithfully the
optimal relaxed trajectory. Since this trajectory is not degenerated, it is clear
that a faster labor switching at some periods of time can make the economy
closer to the relaxed optimal solution.

However, due to the convergence of the sequence of trajectories, it is also
clear that adding more switchings to an already highly chattering trajectory
has very few impact on welfare improvement. For an artificially low error ε
and a supremum value Ĵ we can define a set of original trajectories whose
criterion functional is included in [Ĵ − ε, Ĵ). These trajectories will be said
pseudo-optimal : their criterion functional have almost the same value as the
supremum and they exhibit a similar behavior for capital, consumption and
labor.
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5 Optimal solution and (in)determinacy

When the externalities are not sufficient to generate indeterminacy, that is
when φ + ζ < 1, an interior optimal solution may emerge, as conjectured by
Lucas (1988). In that case, existence and uniqueness of the optimal trajectory
in the non-relaxed problem is insured by the Arrow sufficient condition since
the Maximized Hamiltonian is strictly concave.

The Maximized Hamiltonian Ĥ is the value of the Hamiltonian once the con-
trols have been replaced by their maximized values, obtained by the first-order
conditions (11) and (12):

Ĥ(h, λ) = α

[
ln[u(h)h] +

(1− φ)(1− u(h))

ζu(h)

]
,

where u(h) is implicitly defined by Ω (1−u)1−ζ−φ

u1−φ = h and Ω ≡ α
ζλδ

(
ζ

αφ(1+χ)

)φ
.

As shown in appendix 7.3, provided 1− φ− uζ > 0 for any u ∈ U , the values
of the controls obtained by way of the first order conditions clearly maximize
the Hamiltonian for optimal values of h and λ and its second derivative of Ĥ
respect to h

∂2Ĥ

∂h2
(h, λ) = − α

uh

du

dh

[
−1− φ− ζu

1− u
+

φ + ζu

ζu

]
,

is negative if and only if the term in brackets is negative. 13

It cannot be satisfied for φ + ζ > 1 where the term in brackets is minimal
for φ = 0 and equal to u(ζ−1)

1−u
. Thus, a unique and determinate balanced

growth path (in the decentralized economy) is necessary for the social planner’s
optimal solution to be interior. However, Arrow’s theorem cannot conclude on
the sufficiency of this condition since there exist parameter values for which
a unique equilibrium emerges but the maximized Hamiltonian is not concave
in h.

As in the original model, the efficient growth rate of human capital is higher
than the equilibrium growth rate. This conclusion, as well as Lucas’ conjec-
ture, fails drastically in the case of indeterminacy. By contrast, the chattering
pattern of the pseudo-optimal trajectories makes stop-and-go policies efficient
in human capital accumulation. It must be recalled that the near-optimal be-
havior for agents consists in switching between periods of zero labor effort with
a full allocation of human capital to the sector of consumption goods (u∗2 = 1)
and periods of full labor effort where the share of human capital allocated to

13 After straightforward derivations, one gets: du
dh = − 1

h
u(1−u)
1−φ−ζu < 0.
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the sector of consumption goods is the solution of u∗1(1− u∗1)
ζ−1 = ρ/(ζδ). 14

For the standard parameter values of the Uzawa-Lucas model, that is when
ζ = 1 (linearity of ḣ respect to 1 − u) and θ tends to unity (low elasticity of
ḣ respect to labor), the reader can refer to appendices 7.1 and 7.2 to check
easily that φ tends to zero, u1 and u∗1 to ρ/δ, u2 and u∗2 to 1. 15 . Furthermore,
since u1 < ũ, the two BGP are locally determinate. In the case of indetermi-
nacy, that is for ζ + φ > 1, self-fulfilling expectations can then replicate the
chattering behavior of the pseudo-optimal trajectories, consisting of arbitrary
fast jumps of the labor effort (switching between zero and full labor effort). By
contrast, a smooth stabilization scheme (in the Benhabib-Farmer framework,
see for instance Guo and Lansing (1998)) fails to replicate the erratic behavior
and is likely to deteriorate the representative agent’s welfare by suppressing
endogenous fluctuations. As pointed out by Christiano and Harrison (1999)
in the case of increasing returns to scale, by bunching hard work agents may
jointly increase the average level of consumption and decrease the average
level of labor effort. The standard objective of preventing the economy from
fluctuations is then likely to deteriorate the so-called bunching effect.

Near-optimality of self-fulfilling expectations also means that the sunspot equi-
libria, like the pseudo-optimal trajectories, can be ranked in terms of welfare,
according to the more or less rapidity of the switches from one BGP to the
other. In absence of optimal solution, each near-optimal sunspot equilibrium
is welfare-dominated by another one closer to the optimal relaxed solution.

6 Conclusion

It has been proved in this paper that the form of the optimal solution in the
Uzawa-Lucas model with endogenous labor highly depends on the degree of
the human capital externality. When it is not sufficient to generate indeter-
minacy, the optimal solution is a balanced growth path with a (generally)
faster human capital accumulation than the equilibrium one. However, when
indeterminacy occurs, there is no Pareto optimal solution. Nevertheless, a con-
tinuum of pseudo-optimal trajectories converges to a supremum, solution of
a generalized optimization program in which the original production set has
been “convexified”. These pseudo-optimal trajectories are chattering solutions

14 For periods of full labor effort, the optimal value of u is computed while maxi-
mizing α ln(uh∗) − 1

1+χ + λ∗δ(1 − u)ζh∗, for optimal values of h and λ, that is for
λ∗h∗ = s∗ = α/ρ. For ζ > 1, the equation has two roots but only the lower satisfies
the second order condition: 1− ζu∗1 > 0.
15 Although L1 does not tend to unity, the growth rate of human capital converges
however to the efficient growth rate since L∗φ1 tends to 1

10



along which agents alternate periods of full labor effort with periods of zero
labor effort and can sometimes be replicated by sunspot equilibria for specific
(but realistic) values of the parameters.

Lucas’ conjecture that for any initial configuration h(0) of human capital, the
optimal solution path will converge to some point on an efficient balanced
growth path is not generically validated in our setup. 16 But more important,
in case of pseudo-optimal chattering solutions, endogenous fluctuations are
likely to perform better than any stabilization policy. The role of economic
policy could even be to amplify such fluctuations so that the two balanced
growth paths coincide with the optimal corner solutions, adequate sunspots
helping the economy to switch from one corner to the other. This property of
near-optimality of sunspot equilibria sounds pretty singular within the stan-
dard literature.

For simplicity, results are derived in a model without physical capital but could
be generalized in a model integrating such a component (see Benhabib and
Perli (1994) for the study of the decentralized economy). We plan to pursue
this project in the near future.

16 It is not validated with certainty when indeterminacy occurs and may not be
validated also when the equilibrium is fully determinate.
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7 Appendices

7.1 Global dynamics

Let s ≡ λh. Rearranging equations (4) and (6):

ṡ

s
=

λ̇

λ
+

ḣ

h
= ρ− α

s
+ (1− θ)

ḣ

h
,

s = α
1− u

θu

(
ḣ

h

)−1

.

Substituting equation (2) into the previous equation and differentiating it:

ṡ

s
=

ζu

1− u

u̇

u
+ (1− φ)(1 + χ)

L̇

L
,

where ζ = θ(1 + γ1) and φ ≡ (1−θ)(1+γ2)
1+χ

.

Equalizing equations (4) and (5), one gets:

L =

(
α(1− θ)

θ

1− u

u

) 1
1+χ

.

Finally, the reduced form of the dynamics (4)-(6) is obtained by combination
of these four equations:

u̇

u
=

1− u

1− φ− ζu

ṡ

s

=
1− u

1− φ− ζu


ρ + δ(1− θ − u)(1− u)ζ−1

(
α(1− θ)

θ

1− u

u

)φ

 .

7.2 Balanced growth paths

It has been proved in 7.1 that:

u̇

u
≡ P1(u).P2(u),
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where P1(u) ≡ 1−u
1−φ−ζu

is positive on (ũ, 1] and negative otherwise, with ũ ≡
1−φ

ζ
.

After noticing that:

P ′
2(u) =

δ

u(1− u)

(
1− θ

θ

1− u

u

)φ

P3(u)

P3(u)≡ ζu2 − [1− φ + (1− θ)(ζ − 1)]u− (1− θ)φ,

where P3 is a second-order polynomial that tends to +∞ as u tend to ±∞,
with P3(0) = −(1 − θ)φ < 0 and P3(1) = θ(φ + ζ − 1), two cases must be
distinguished.

First, when φ+ζ < 1, P1(u) is always negative and P3(u) has no root between
zero and 1. P2 is then decreasing on [0, 1], with limu→0 P2(u) = +∞ and
limu→1 P2(u) = −∞. There is a unique balanced growth path.

Second, when φ + ζ > 1, there is exactly one root between zero and 1, that is

ū =
1− φ + (ζ − 1)(1− θ) +

√
[1− φ + (ζ − 1)(1− θ)]2 + 4φζ(1− θ)

2ζ
.

P2 is then decreasing on [0, ū) and increasing on (ū, 1]. For φ < 1+(ζ−1)(1−θ):

ū =
1− φ + (ζ − 1)(1− θ)

2ζ

+
[1− φ− (ζ − 1)(1− θ)]

√
1 + (φ + ζ − 1)/[1− φ− (ζ − 1)(1− θ)]2

2ζ

>
1− φ

ζ
= ũ.

To the contrary, for φ ≥ 1 + (ζ − 1)(1 − θ) and φ + ζ > 1, it must be notice
that φ(1− θ) > 1− φ and:

ū =
1− φ + (ζ − 1)(1− θ)

2ζ

+
[(ζ − 1)(1− θ)− 1 + φ]

√
1 + (φ + ζ − 1)/[1− φ− (ζ − 1)(1− θ)]2

2ζ

>
(ζ − 1)(1− θ)

ζ
>

φ(1− θ)

ζ
>

1− φ

ζ
= ũ.
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Thus, for φ + ζ > 1, since P1(u) cannot be equal to zero, there can be up to
two equilibria:

• there is no equilibrium when P2(ū) > 0,
• there is one equilibrium exactly when P2(ū) = 0 and this equilibrium is

u∗ = ū,
• there are two equilibria when P2(ū) < 0, namely u1 and u2, such that

u1 < ū < u2.

Assuming the existence of two equilibria, we can derive easily the sign of u̇/u.
For ũ < u1:

u umin ũ u1 ū u2 1
P2(u) + + 0 − − 0 +
P1(u) − + + + +
u̇/u − + 0 − − 0 +

For any u(0) ∈ (ũ, u2), the dynamics converges to u1. Thus, the lower equi-
librium is indeterminate. To the contrary, the upper equilibrium is locally
determinate.

For ũ > u1:

u umin u1 ũ ū u2 1
P2(u) + 0 − − − 0 +
P1(u) − − + + +
u̇/u − 0 + − − 0 +

The transversality condition is satisfied only when the economy lies on a bal-
anced growth path. The two equilibria are locally determinate.

7.3 Hessian matrix of H̃(L, u, h∗, λ∗)

The Hamiltonian associated to the social planner’s program is:

H̃(L, u, h, λ) = α log(uh)− L1+χ

1 + χ
+ λ

[
(1− u)ζhLφ(1+χ)

]
,

Using the first-order conditions of the social planner’s program

14



∂H̃

∂L
(L, u, h, λ) = 0 ⇐⇒ α(1− u)

ζu
= λḣ (11)

∂H̃

∂u
(L, u, h, λ) = 0 ⇐⇒ L1+χ

φ(1 + χ)
= λḣ (12)

∂H̃

∂h
(L, u, h, λ) =−λ̇− ρλ ⇐⇒ λ̇

λ
= ρ− α

λh
− ḣ

h
, (13)

and after some algebra, the Hessian matrix He of H̃(L, u, h∗, λ∗) can be written
as follows: 17

He =



− ζL1+χ(1−ζu)

φ(1+χ)u(1−u)2
− ζLχ

1−u

− ζLχ

1−u
(φ− 1)(1 + χ)Lχ−1


 .

The determinant of the matrix is:

Det(He) =
ζL2χ

φu(1− u)2
(1− φ− ζu).

It is positive if and only if:

1− φ− ζu > 0 for any u ∈ U ⊂ [0, 1]. (14)

Under condition (14), the trace of the Hessian matrix is strictly negative:
both eigenvalues have negative real part. For optimal values of h and λ, the
Hamiltonian H̃(L, u, h∗, λ∗) is then jointly concave in (L, u) ∈ Υ. A sufficient
condition is that 1 − φ − ζ > 0: in that case, the BGP is unique and then
globally determinate according to appendix 7.2. However, it is worth noting
that indeterminacy does not rule out this condition.

When condition (14) is not satisfied in the neighborhood of the BGP, one
of the two controls must have corner solutions. Provided h > 0 and L > 0,
∂H̃/∂u = 0 has a solution between zero and 1 for u and ∂2H̃/∂u2 < 0: the
optimal value of u must be interior. Thus, the value of L maximizing the
Hamiltonian is either zero or 1.

7.4 Proof of proposition 1

According to the Filippov-Cesari theorem, there exists an optimal pair (h∗(t), v∗(t))
to the optimization problem (7)-(10) provided for all t ∈ R+ and all admissible
pairs (h(t), v(t)):

17 The Hessian matrix is computed for optimal values of h and λ, respectively h∗

and λ∗.
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i. there exists an admissible pair (h(t), v(t)),
ii. for each (h,t) the set N(h, V, t) ∈ R2 defined by

N(h, V, t) =

{(
2∑

i=1

pi(t)U(Ci(t), Li(t))e
−ρt + η, g(h, v, t)

)
: η ≥ 0, v ∈ V

}

and

g(t, h, u, L) ≡
2∑

i=1

pi(t)[ui(t)K(t)]αLi(t)
β − τpi(t)ui(t)

θK(t)− pi(t)Ci(t)

is convex,
iii. Υ is closed and bounded,
iv. there exist piecewise continuous functions m and j such that

∣∣∣∣∣
2∑

i=1

pi(t)U(Ci(t), Li(t))e
−ρt

∣∣∣∣∣ ≤ m(t)|h|+ j(t),

for all (h, t), v ∈ V .

Conditions i. and ii. are straightforwardly satisfied: the relaxed problem has
been built so as to specifically satisfy condition ii. Condition iii. is defined by
assumption: Υ = [0, 1]2.

Since f : [h(0), +∞)× V × R+ → R defined by

f(h, v, t) =
2∑

i=1

piU(Ci(t), Li(t))e
−ρt

is a continuously differentiable mapping and the derivative respect to h is
continuously decreasing on h ∈ (h(0), +∞), bounded above by f ′h(h(0), v, t)
and below by zero, then f is a Lipschitz function and necessarily satisfies
condition iv.

7.5 Proof of proposition 2

According to Carlson (1993), there exists a sequence {Ki(t), xi(t)}∞i=1 of ad-
missible pairs for the initial non-relaxed problem such that the sequence of
admissible trajectories {hi(t)} converges uniformly to h∗(t) on compact sub-
sets of [0, +∞) provided:

i. Υ is closed and bounded,
ii. the set given by

M = {(t, h, x) : (t, h) ∈ [0,∞)× [h(0), +∞), x ∈ Υ}
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is closed,
iii. F = (g, f) : M → R2 be a given continuous vector-valued function, and

let m be a piecewise continuous function from [0, +∞) into R such that

|F (t, h, x)− F (t, h′, x)| < m(t)|h− h′|

holds for almost all t ≥ 0, (t, h, x) ∈ M and (t, h′, x) ∈ M .

Condition i. has already been proved.

The closure of [0,∞), [h(0), +∞) and Υ implies condition ii.

The argument to prove condition iii. is the same as for condition iv. above.

7.6 Proof of proposition 3

It has been proved that for φ + ζ > 1, the optimal choice for labor must be a
corner solution: either L = 0 (and u = 1) or L = 1 (and u ∈ [umin, 1)). It must
be noticed however that for any u ∈ [umin, 1], U(h, 0) > U(uh, 1) it cannot
be optimal to choose L = 1 at every period. It is clear that choosing L = 0 at
every period is not optimal either: selecting L = 1 at a given period t̆ ∈ [0, +∞)
does not decrease the value of the objective function but permanently increases
the stock of human capital then the intertemporal utility when agents choose
L = 0 for any t ∈ (t̆, +∞). The optimal solution, if any, must alternate periods
of zero labor effort and periods of full labor effort.

In the relaxed problem, assume two different trajectories on [t0, t2] ⊂ [0, +∞)
and let t1 be the real number such that t1− t0 = t2− t1. The first trajectory is
such that that the strategy L1(t) = 0 (resp. L2(t) = 0) is chosen by the social
planner as a degenerated trajectory for any t ∈ [t0, t1) (resp. t ∈ [t1, t2]). In
other words:

p1(t) =





1 for t ∈ [t0, t1)

0 for t ∈ [t1, t2].

The associated optimal choice for u is: 18

u(t) =





u1(t) = 1 for t ∈ [t0, t1)

u2(t) = ũ for t ∈ [t1, t2].

18 When L = 1, the problem collapses to maximize α ln(uh) such that ḣ = δ(1−u)ζh

or equivalently to maximize α ln
(
uh(t0)eδ(1−u)ζ

)
. It is easy to show that optimal u

is unique at every period. We call this value ũ.
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This means that h increases only on [t1, t2] at rate δ(1− ũ)ζ ≡ ω.

To the contrary, select a mixed strategy with u1(t) = 1 and u2(t) = ũ for any
t ∈ [t0, t2], and:

p1(t) =





p1 ∈ (0, 1) for t ∈ [t0, t1)

p′1 ∈ (0, 1) for t ∈ [t1, t2].

In this strategy, h increases at rate (1− p1)ω on [t0, t1) and at rate (1− p′1)ω
on [t1, t2].

For any ε ∈ [0, t1 − t0), the instantaneous utility of periods t0 + ε and t1 + ε
is for the degenerated strategy:

Ud(t0 + ε, t1 + ε) = U(h(t0), 0)e−ρ(t0+ε) + U(ũh(t1 + ε), 1)e−ρ(t1+ε),

and for the mixed strategy:

Um(t0 + ε , t1 + ε) =

[p1U(h(t0 + ε), 0) + (1− p1)U(u(t0 + ε)h(t0 + ε), 1)] e−ρ(t0+ε)

+ [p′1U(h(t1 + ε), 0) + (1− p′1)U(u(t1 + ε)h(t1 + ε), 1)] e−ρ(t1+ε).

By setting arbitrarily 1−p1 = (1−p′1)e
−ρ(t1−t0) and after some straightforward

derivations, it can be proved that:

Um(t0 + ε, t1 + ε) = Ud(t0 + ε, t1 + ε) + αω(1− p1)(t1 − t0)e
t1+ε,

which is strictly greater than Ud(t0 + ε, t1 + ε) for p1 ∈ (0, 1).

Since the inequality is true for any ε ∈ [t0, t1), the mixed strategy makes
the agents better-off and the social planner has no incentive to choose any
degenerated strategy.
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