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Abstract

We consider a real business cycle model with productive externalities and an aggregate non-convex
technology ¢ la Benhabib and Farmer, which exhibits indeterminacy of the steady state and multi-
plicity of deterministic equilibria. The aim of the paper is to rank these different equilibria according
to the initial values of consumption using both a non-naive quadratic approximation, extensively
explained by Benigno and Woodford [2006]. We study the implications of such a ranking in terms of
smoothness of the welfare-maximizing solution and show that maximizing welfare consumption and
labor paths are all the smoother than the level of increasing returns is low. At last, this solution
provides a good benchmark for judging the desirability of the stabilization Guo and Lansing policy.
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1 Introduction

Despite the concavity of the utility function, Christiano and Harrison [2002] have established that in-
creasing volatility of labor may raise welfare in economies with non-convex technology sets a la Benhabib
and Farmer [1994]. In absence of any productive externality, fluctuations in consumption and labor are
welfare-diminishing compared to a smooth consumption/investment plan when the utility function is
concave. However, in the presence of productive externalities, the welfare loss implied by fluctuations
may be more than compensated by the gain inherited from the increasing returns to scale: for a given
capital stock, by bunching hard work, agents are able to increase the average level of consumption without
raising the average level of labor. When disutility of labor does not raise disproportionately compared
to the additional utility procured by consumption, this “bunching” effect dominates the former negative
“concavity” effect and makes the agents better-off. Thus, when the steady state equilibrium is locally
indeterminate, that is when there is multiplicity of deterministic equilibria around the steady state,
stochastic sunspot equilibria may be welfare-improving.

In the literature the possibility of stabilizing an economy characterized by local indeterminacy has
been analyzed in such a framework by Guo and Lansing [1998].! However no much attention has been
dedicated to the choice of the best equilibrium path on which the economy has to be stabilized. It is
clear, from Christiano and Harrison’s estimates, that a stabilizing policy can make the agents worse-
off when expectations are pinned down on a suboptimal path. From Pareto’s criterion viewpoint, any
(decentralized) deterministic equilibrium path of the Benhabib and Farmer economy is not efficient as
long as agents do not grasp the externality of production. Nevertheless, from a welfare viewpoint, these
deterministic equilibria do not display the same level of utility: the optimization programme fails to
determine which of them provides the maximum amount of welfare since they all satisfy the first order
conditions and the transversality condition. Thus, when agents jump from one path to another, the

1Economic policy constructed to stabilize the economy by minimizing the variance of output have also been analyzed in
models in which the level of externality required to get indeterminacy is less stringent than in the current framework. See
for instance Guo and Harrison [2002] or Sim [2005].



stochastic equilibrium so obtained may increase their welfare provided they leave a welfare-dominated
deterministic path for a welfare-improving deterministic path.

In this paper we provide a welfare ranking of the different deterministic equilibria in an exogenous
growth model with a non-convex technology and a locally indeterminate equilibrium. We determine the
conditions under which a deterministic path switching makes the agents better-off.2 We prove that the
starting value of consumption determines simultaneously the speed of the capital accumulation and the
desirability of a deterministic path switching. Actually, we translate and investigate the concavity and
the bunching effects developed by Christiano and Harrison in terms of monotonicity of the consump-
tion/investment plan. It will be shown that the (decentralized) welfare-maximizing equilibrium displays
a path all the less monotonic and a ratio of the initial level of consumption over its steady state value all
the lower since increasing returns to scale are high.

Bunching hard work in the very first periods makes capital accumulation faster. In the next periods,
agents can benefit from the high level of capital stock by maintaining a high level of consumption but
decreasing labor significantly. When increasing returns are high enough, reaching the welfare-maximizing
capital stock requires relatively few time and effort, which explains the non-monotonicity of the equilibria
during the first periods. However, when increasing returns are close to the Benhabib-Farmer condition
for indeterminacy, bunching hard work in the first periods is not sufficient to accumulate quickly a large
capital stock, which would require huge levels of labor and a loss of welfare that next periods consumption
cannot offset. Thus, when increasing returns to scale are not high enough, the second best equilibrium
consists in minimizing the variance of labor, smoothing consumption and accumulating the capital stock
progressively.

Finally, we compare the welfare-maximizing path so obtained with the Guo-Lansing solution. We
prove that the stabilizing tax policy they propose to prevent from endogenous fluctuations always dete-
riorates welfare compared to the second best equilibrium of the Benhabib-Farmer economy. We provide
an alternative policy able to pin down expectations on the deterministic equilibrium we found. This can
be done by fixing the rental rate on capital or the real wage at one or several periods of time.

After presenting briefly the main characteristics of the Benhabib-Farmer model in the second section
— including uniqueness of the steady state equilibrium and the condition for indeterminacy, we will
assume this condition satisfied and will specify in section 3 the set of monotonic consumption paths for
any values of the parameters. These results will be helpful in establishing the welfare ranking of section 4
when we use a quadratic approximation of the utility function. We will confirm and extend these results
with simulation methods. Before concluding, we will compare the welfare-maximizing equilibrium with
the Guo-Lansing solution in section 5, and we will draw the conclusions for economic policy.

2 Model Setup

2.1 Agents’ behavior

In this paper we analyze the welfare properties of different equilibrium paths in the Benhabib-Farmer
model [1994]. This deterministic continuous-time model with infinitely lived agents is characterized by
social increasing returns to scale due to factor-specific externalities in the aggregate production function.
However, the representative firm is assumed not to take into account the externality of production and
then faces a Cobb Douglas production function Y with constant returns to scale at the micro-level.
Formally:

Y(t) = A@)K(t)*L(t)® with 0<a<1, and a+b=1, (1)
At) = K(@)YL(t)™ with ~ > 0, (2)
where K and L represent the average economy-wide levels of capital and labor. In equilibrium, K = K
and L = L and by making the parameters substitutions « = a(l1 + ) and 5 = b(1 + v), we get the

aggregate production function:
Y(t) = K(t)*L(1)”,

21t is worth noting however that we only compare the differences in utility at the different deterministic equilibria after
a definite change of path. We do not investigate stochastic equilibria for which agents permanently switch the equilibrium
paths.



which obviously exhibits increasing returns to scale since a + 3 > 1. In the same time, the economy is
populated by a large number of identical consumers. As usual, firms maximize profit, which breaks even
because of the constant returns, while the representative consumer, owner of the firms, faces the following
optimal control problem depending on the two controls C, consumption, and L, labor:

max]c (log C(t) — W) e Pdt,

C,L 1—x
0
subject to: )
K(t) = (r(t) = 6) K(t) + w(t)L(t) — C(t),

where x < 0 is the inverse of the Frisch elasticity of labor supply, p > 0 is the discount rate and 6 > 0
the depreciation rate. We call r(t) and w(t) respectively the rate of return on capital and the real wage
at time ¢.

2.2 Dynamical system and steady state equilibrium

From the first order conditions and after some algebra, Benhabib and Farmer obtain the following two
nonlinear ordinary differential equations system:

B = elotmktpze 5 ek (3)
¢ = aqetotmktme 5, (4)
where x = In X, uo = gf 131;7 B = (X_é)i%)_ﬂ and po = B%H It is worth noting that the system

represents the global dynamics of the economy.
Taking into account such dynamics, we determine the steady state of the system:

L, = ((p+5)(1—a))_

p+o(l—a)
alb =
K, = s
<p+5)
<p+6><1—a><aL§>“a
Cy, =
a p+9

Benhabib and Farmer show that under the condition 8 — 14 x > 0, the aggregate labor demand
curve is upward sloping and steeper than the labor supply curve, and the steady state equilibrium is
indeterminate. In the neighborhood of such an equilibrium, there exists a continuum of paths converging
to it, then satisfying both the first order conditions and the transversality condition. In this framework,
the perfect foresight and the rational expectations hypotheses, which usually lead to a unique equilibrium
path, cannot discriminate between the different paths: in absence of coordination, agents are allowed to
jump from one path to another at any period. However, in terms of welfare, these paths are not equivalent.

3 Local analysis

The results of this section are closely related to the classical Grobman-Hartman theorem about the
preservation of the topological properties of the system under linearization. It states that around a
hyperbolic equilibrium the flow of a nonlinear differential equation is conjugate via a local homeomorphism
to the flow of its linear approximation.? It is clear from Benhabib and Farmer [1994] that no eigenvalue
crosses zero as the determinant changes sign and the steady state becomes stable.* Then, the stationary
equilibrium remains hyperbolic as the level of increasing returns increases and the stability of the steady
state changes, even for the minimum degree of externality necessary for local indeterminacy.

3In a continuous-time model, an equilibrium is said to be hyperbolic when there is no eigenvalue equal to zero.
4To be precise the change in the stability of the equilibrium is related to the presence of a discontinuity in the value of
one of the two eigenvalues, say A1, as the externality 7, increases: 1imﬁ_1+x_,07 A1 = —oo while 1imﬁ_1+x_,0+ A1 = +oo.



From now, it will be assumed that the model exhibits local indeterminacy and then that both eigen-
values have strictly negative real part.® In this section, the properties of the Grobman-Hartman theorem
are used to describe qualitatively the different equilibrium paths in terms of monotonicity by solving the
linear approximation system. The approximated values of capital and consumption so obtained help to
redefine the optimization problem to be solved and to maximize the representative agent’s utility respect
to the initial value of consumption he/she chooses.

3.1 Linearization

We proceed to a first order approximation of equations (3) and (4) around the deterministic equilibrium
and express the general solution in terms of deviation of the two variables k(t) and ¢(t) from their steady
state values ks and cg, i.e. Z(t) = In X(¢) — In X,. We get:

{ J(t) ] - { Mo n2vi2 } [ e’ } (5)

ét) | [ mvar mavae et

with (1 W6 (1 ) —§
V—[f«&]-{vi U;i]_{(l-i-m)\f/—é—)\l (1+,u1)\12/—5—>\2 ’ ©

where ¥ = (p+6)/a and &; and & are eigenvectors associated to the eigenvalues A; and Ag, which can be
obtained after computing the Jacobian of the system formed by equations (3) and (4). Moreover, given
a starting point [K(0), C(0)], we apply Cramer’s rule and deduce:

k(0) — v12¢(0

mo = 22t el g
V11022 — V1221
&(0) — v, k(0

n = 11116() V21 () (8)
V11022 — V1221

3.2 Monotonic equilibrium paths

In order to understand the economic implications of the equilibrium paths ranking in terms of intertem-
poral consumption smoothness, we study in this subsection the conditions on ¢(0) under which the path
is monotonic. It is reminded that monotonicity only occurs when eigenvalues are real. In the following,
we will assume without loss of generality that Ay < Ay < 0.

Under the condition  — 1+ x > 0 the stable manifold has dimension 2. We call stable arms the two
paths such that:

&(t) = mvgse™t, i ={1,2}.

Let co¢,, i = {1,2}, be the starting log-values of consumption of such a path for a given initial stock of
capita K (0). These values are such that respectively n; and 7, equalize zero, that is:

~ v

o6 = o TR0 9)

Coe, = cs—|—l;:(0)@. (10)
V12

The following proposition holds:

Proposition 1 For a given initial stock of capital K(0) < K (resp. K(0) > Kj), there exists a strictly
positive (resp. negative) €* such that for c(0) € [coe, —€*,co.e,] (Tesp. [coe,, Coe, —€¥]) equilibrium paths
of consumption are monotonic.

Proof. See Appendix A.2. =
A specific case with K(0) < K is reported in Figure 1 below:

5It must be noticed however that the linear approximation computed here remains valid whatever the sign of the
eigenvalues.
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Figure 1: Consumption paths around the steady state.

3.3 Reformulation of the optimization programme

For a predetermined stock of capital K(0) and a given initial level of consumption C(0), the optimal paths
of capital and consumption can be computed using equations (3) and (4). Furthermore, the associated
optimal paths of labor can be derived using the following first order condition:

(B—14+x)I(t) =c(t) — ak(t) — Inb. (11)
Searching the path making the agents better off consists of determining the initial level of consumption

that maximizes welfare: -
L(t)t=x\ _
1 t) — —— PLdt. 12
s [ (e = 555)- "

Since U(cs,ls) is a constant, it must be noticed that our optimization programme (12) can be rewritten
as:

max [ U(c(t),1(t))e PtdL, (13)
c(0) 0/
where U(c(t),1(t)) = U(c(t),1(t)) — Ulcs, ls) and U(c(t),1(t)) = e(t) — %

It is now well know that first-order approximation techniques are not always well suited to handle
welfare comparisons. This is especially the case for stochastic models, as already shown by Kim and
Kim [2004] or Schmitt-Grohe and Uribe [2004] among others. Although the current paper proposes
a deterministic framework, we will follow the method developed by Fleming [1971], applied by Magill
[1977] and recently revisited by Benigno and Woodford [2007a, b], and will make the different welfare
comparisons using a second-order approximation of the utility function.

However, for any predetermined stock of capital and whatever the order of approximation, it is not
obvious how to determine the range of values of initial consumption lying in the region where topological
equivalence occurs and the approximation errors do not affect the welfare ranking.

4 Welfare Ranking of deterministic paths

When the dynamics is constrained to be linear and a quadratic approximation of utility function is
provided, an analytical approach can be used to determine approximatively within the set of possible



values the initial level of consumption maximizing welfare. However, the approximation error implied by
such a technique requires us to work in a small neighborhood of the steady state.

The technique used by Benhabib and Farmer to prove indeterminate and which consists in linearizing
the dynamic system and checking whether eigenvalues have negative real parts ensures that the stationary
equilibrium is asymptotically stable, that is locally attractive.

Nevertheless, the technique does not provide any indication on how close to Cy the initial value of
consumption must be chosen. Russell and Zecevic [1998, 2000] propose to identify the region of attraction
for the Benhabib-Farmer model by the use of a Lyapunov function.® From this region and for different
initial stocks of capital, they compute the largest interval of initial consumption levels such that the
equilibrium paths are not constrained by the conditions of the Lyapunov stability but finally converge to
the steady state. The concept of region of stability, as they call it, cannot be used for our problem since
it does not guarantee that a path included in this set can be approximated far enough from the steady
state by the linear approximation we derived.

To encompass the problem of the definition of the region of stability, ensure topological equivalence
of the linearized system and limit the approximation error, we proceed in two steps.

First, we restrict the analysis to the minimum degree of externalities insuring indeterminacy. We
thus determine analytically the welfare-maximizing starting value of consumption within the set of deter-
ministic equilibria using a non-naive quadratic approximation of the utility function around the steady
state.

Second, making use of simulation methods we enlarge the range of increasing returns to scale: we
are then able to determine precisely a good approximation of the true value of the welfare-maximizing
starting value of consumption and the behavior of the related consumption/investment plan whatever
the values of the parameters.

4.1 Formal analysis
4.1.1 Approximation method
Following Fleming [1971], it can be shown that:

Ulkye) = —(1=x)e" (k) + e (W k + p2d)® — (W = 6)(& = k)] +O(|| (¢, k)|[*)
U (t) Uz (t)

= Uk, c) + O(||(c, k)|]?)

with [(k,¢) = £525 for 3 — 1+ x # 0.
The first term in the right hand side; U;(t) is always negative (or null) while the second term, Us(t),

can be positive.

Proposition 2 When 3 tends to 1 —x, the welfare-mazimizing path is monotonic and starts with ¢(0) =
€0,¢2 -

Proof. According to equations (5) and (6), for ¢ >> 0, &(t) tends to nove*® and k(t) tends to
_ o N2
Nov12€™2t = (v19/v99)E(t) — &(t)/a as B tends to 1 —x. The term Us(t) collapses to e~¢§ (1*—"‘5(0)8@) .

[e3

U(t) is maximum when the term of higher degree, Uy (), is maximum, that is for &(t) = ok(t
periods. At the first period, this means ¢(0) = ak(0) ~ (va2/v12)k(0) as 3 — 1 — x, that is ¢(0) = co ¢,
as shown in equation 10. m

Some conclusions about the welfare-maximizing path can be drawn as ( increases from 1—x: as shown
- _ N
in proposition 2, for ¢t # 0, Uy (¢) is maximum provided ¢(t) ~ ak(t) whereas Uy (t) ~ e €0 (1?7”‘6(0)8‘”)

is maximum for |¢(0)| as high as possible, i.e. ¢(0) = co¢, —e*.7 When 3 — 1 + y increases from zero,

6For an exhaustive definition of the concept of Lyapunov stability, see for instance.
"Since &(t) ~ ak(t), the optimal path must be monotonic and ¢(0) must be lower or equal to Co,eq —E”.



increasing |I(t)| yields a mid decrease of U;(t) while Us(t) can be increased provided ¢(0) gets closer to
Co,65 — e*.
Thus, as (3 increases from 1 — x, we expect a relative decrease of ¢(0).

4.1.2 Economic arguments

When the level of increasing returns to scale is just sufficient to insure indeterminacy, a government that
wants to maximize welfare and that is able to pin down expectations on a given path has an incentive to
coordinate consumers’ expectations on a ¢(0) as close as possible to cg ¢, for any given stock of capital
k(0).

On this path:

6(t) ~ 7721)226;\2t
k(t) ~ nmavie,

log-deviations of capital and labor evolve monotonically and approximately at the same rate Ao. Actually,
for mid levels of increasing returns to scale — when they are just sufficient to insure indeterminacy —
the convexity of the utility function imposes to the welfare-maximizing path to minimize the variance of

labor. Any degree of fluctuations is undesirable:

1. starting with a low level of consumption (cy < co¢, —€*) that decreases on the first periods yields
a higher instantaneous utility at the very beginning by reducing the desutility of labor but requires
a sharp increase of labor afterwards to reach the steady state equilibrium, which in turn reduces
the intertemporal utility. Increasing returns to scale are not sufficient to dampen the increase of
the last periods average level of labor.

2. starting with a high level of consumption (co > co¢,) and accumulating rapidly a large stock of
capital to benefit from this accumulation afterwards (since labor can decrease faster than consump-
tion: the so-called bunching effect) yields a deep loss in the instantaneous utility by concentrating
the desutility of labor in the first periods which is never compensated by the following decrease in
the average level of labor. Increasing returns to scale are not sufficient to maintain a high level of
consumption while decreasing labor once a large stock of capital has been accumulated.

The welfare-maximizing path is thus presents consumption, capital and labor paths as smooth and
balanced as possible, that is exhibiting growth rates as flat as possible. In that case, agents do not expect
the bunching effect to be optimal and would rather choose a monotonic path if they may pin down their
expectations on it. But it is important not to conclude from this consideration alone that this bunching
effect is not optimal from the social planner viewpoint for the welfare-maximizing path of the decentralized
Benhabib and Farmer economy is not actually the optimal path. Whilst in Christiano and Harrison [1999]
a stochastic sunspot equilibrium can make the agents better-off compared to a deterministic sunspot
equilibrium by bunching hard work at some periods of time, a deterministic equilibrium is not able
to welfare-dominate another one using the bunching effect when increasing returns to scale are just
sufficient to insure indeterminacy. The intuition for such a finding is straightforward: an economy
can be closer to the optimal solution when following a stochastic equilibrium that an economy whose
agents’ expectations are pined down on a deterministic path where the productive externalities are not
internalized. Consequently, the agents expect the bunching effect not to be optimal while it is actually.

It would be interesting to enlarge the set of possible levels of increasing returns to scale in order to
check whether or not the agents have interest to choose a non-monotonic equilibrium path, i.e. whose
starting value of consumption would be lower than cg ¢, — €* or higher than cy¢,. This is the objective
of the next subsection.

4.2 Computational analysis

Until now our analysis has focused on the minimal level of increasing returns (or close enough) required
to get indeterminacy. Further from these values, an algebraical derivation of the welfare-maximizing



value of ¢(0) is not straightforward. In this section, we relax the size of increasing returns and switch
to simulation methods to compute ¢(0). We draw some qualitative predictions on the relation between
the initial level of consumption and the level of increasing returns. Especially, it will be shown that the
higher the increasing returns to scale, the higher the welfare-maximizing initial level of consumption and
the less smooth the maximizing welfare paths of consumption, labor and investment.

4.2.1 Simulation methods

Computationally, we proceed as follows. First, we derive the eigenvalues of the Jacobian and the linear
approximation of the log-values of capital and consumption, and we substitute them into the quadratic
approximation of the utility function. We solve numerically the integral and obtain a quadratic approxi-
mation of the welfare function of the form:

Wie(0)] = n1c(0)? + noc(0) + ng,
where n1 < 0 and whose maximum is reached for:
c*(0) = —2n1/na.

We first parameterize the economy as Benhabib and Farmer did: the capital share a = 0.3, the inverse
of the Frisch elasticity of labor y = 0, the discount rate p = 0.065 and the depreciation rate § = 0.1.
The initial value of capital is set close enough (but not to close) to the steady state at ko = 0.9k4.% All
the initial values of the parameters are checked to be in the attraction set.® Then, for different size of
increasing returns to scale, v, we get:

(0 == R(cy ) ‘ Level of increasing returns
0,44 045 046 047 048 049 0,50 0,51 0,52
T NI U T R R RS ST

=)
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Level of increasing returns

On figure 1, we have sketched the welfare-maximizing value of ¢(0) in addition to co ¢, —€* and co¢,
as the degree of increasing returns to scale 7 increases from the minimal value satisfying the condition
for indeterminacy. These results confirm proposition 2, which predicts that within the set of monotonic
paths, the maximizing welfare equilibrium starts with an initial level of consumption ¢(0) = ¢g¢,. They
also confirm our conjecture that this initial level tends to get closer to cp¢, — €™ as 7y increases.

When the real part of both eigenvalues merge (as shown on figure 2) and become complex, it can be
easily seen from equations (7) and (8) that R(ve1/v11) = R(vaz/v12) and then that R(coe, ) = R(co,e,) =
R(coe, —€*). For higher level of increasing returns, the welfare-maximizing path must be non-monotonic.
However, it must be noticed that the welfare-maximizing path becomes non-monotonic before this thresh-
old. Since co¢, — € increases faster than c¢*(0) there is a level of increasing returns above which the
maximum welfare is reached for an initial level of consumption ¢*(0) outside the range [co ¢, — €*,co¢,],

8 Alternative computations have been derived with kg = 0.99ks and kg = 0.999ks but do not affect the conclusions. The
difference in welfare from one path to another is however smaller.
9Taking into account table 1 in Russell and Zecevic (1998) it is, for example, possible to observe that ¢(0) may be chosen

in the interval (cl_oé‘il%, c'l‘})"é’%) when 3 = 1.26.



meaning that the welfare-maximizing path is non-monotonic and the degree of consumption smoothness
lower while the eigenvalues are real.

Actually, monotonicity occurs for almost all plausible values of the increasing returns. For lower
elasticities of labor and higher capital shares, eigenvalues may not merge, the optimal values of initial
consumption may remain included in [cg ¢, — €%, co¢,] and non-monotonic paths may never be welfare-

maximizing. When y = —.25 (and the other parameters unchanged) for instance:
‘_ —R(ey e~ e*) eH(0) —. = R(e, 52)‘ Level of increasing returns
0,9 1,0 1,1 1,2 1,3 1.4 1,5 1,6 1,7
1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 L
,0,2:/
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08 0 o n 2 — A —12

Level of increasing returns

4.2.2 Economic arguments

In optimal growth models a la Benhabib and Farmer with social increasing returns to scale and productive
externalities, Christiano and Harrison [1999] distinguish two effects affecting the consumption/investment
plans. For a given technological coefficient (a given productive externality), the concavity of the utility
function prevents from fluctuations which deteriorate welfare. This “concavity effect” leads to choose
monotonic equilibria and smooth consumption and labor over time so as to maximize agent’s welfare.
However, when the externality varies with the average levels of capital and labor, increasing returns to
scale appear at the aggregate level. It may be welfare improving to bunch hard work in the first periods
to boost capital accumulation in order to benefit from higher productive externalities in the future for
lower levels of labor.

0,02

Time t
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| c(H-c, k(t)k, —— 1<t)45|

When this “bunching effect” dominates the “concavity effect”, agents bring forward a part of their
labor supply, raising the average level of consumption and decreasing labor after a while. On the figure



above, we pictured the optimal paths of capital, consumption and labor for v = 0.9.

On the one hand, a higher level of increasing returns to scale makes capital accumulation larger for
the same amount of worked hours or equivalently allows the representative agent to raise consumption
without raising labor. On the other hand, the higher the level of increasing returns to scale, the higher the
steady state value of capital: the average level of labor required to reach this steady state value appears to
be higher when the consumption path is monotonic since agents do not benefit from the non-convexities
of the production function. The conjunction of these two effects explain why it is important to bunch
hard work when the degree of increasing returns to scale is huge.

When paths are monotonic, capital, consumption and labor lay below their steady state values forever.
Here, this is no longer true: consumption and capital remain during several periods above their steady
state values whereas labor remains below. Agents accumulate the capital stock during the first periods,
which erodes gradually afterwards: they use this capital stock accumulated to conciliate a high level
of consumption with a moderate level of labor. It is worth noting, however, that this happens only
when eigenvalues are complex: non-monotonic paths when eigenvalues are real exhibit a decrease of
consumption, capital and labor on the very first periods.

When increasing returns to scale are not sufficient, accumulating a large amount of capital requires
to pay a stringent tribute in terms of disutility of labor that the increase in consumption cannot com-
pensate. When the level of increasing returns is close to the minimum value to get indeterminacy, there
is no level of capital stock such that the “bunching effect” dominates the “concavity effect”: far from
accelerating capital accumulation, agents are better-off when they smooth consumption and labor over
time. As increasing returns become more and more important, the “bunching effect” is more likely to
offset the “concavity effect”: actually this configuration cannot happen if empirical values are given to
the parameters. Although the welfare-maximizing path is generically monotonic, the welfare-maximizing
value of initial consumption tends to diverge from cg ¢,: this means that this path is all the less monotonic
since the degree of externalities increases.

In any case, welfare deals more with the steady state value of welfare than to the monotonicity of the
equilibrium paths. It is recalled that the instantaneous welfare U (k(t), c(t)) = U (k(t), c(t)) + Ul(cs, ks) +
O(||(c(t), k(t))[]?). As shown on the figures below, U is a negligible part of the intertemporal welfare.

0,00254

0,0020]
0,00154
0,0010

0,0005-

0,0000- T T T T T T
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Intertemporal welfarel
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This is an important observation for judging the desirability of the stabilization Guo and Lansing
policy.

5 Stabilization policy

5.1 Guo and Lansing tax policy

We present here a slightly modified version of the Guo and Lansing stabilization policy, namely a coun-
tercyclical tax on production 7(¢) (or equivalently a tax on both capital and labor incomes) which is

10



redistributed in guise of a proportional lump sum transfer T'(¢):
]
Y, .
T(t) = 1—( ) with ¢ >0

Y(t)
T(t)Y ().

T(t)

In this case, each agent faces the same tax rate which increases with the national income. Finally, the
law of motion of capital becomes:

K(t) = [(1 = 7(t))r(t) — §]K(t) + (1 — 7(t))w(t)L(t) — C(t) + T(t).

It can be shown that the steady state does not vary from what we have previously computed and the
new eigenvectors are such that:

T e o I T AN o el

1 V22 1+,u’1)\11—57/\1 (1+,u’1)\11757)\2
where:
PR () RS R VICE)
! Bl —¢)—(1+x)
;o p
My =

CBLl-¢) - (1+x)

Guo and Lansing [1998] have shown that the condition for determinacy is satisfied when 5(1—¢)—1+
X < 0. When £ tends to 1—x a infinitely small ¢ can be chosen such that 3(1—¢) tends to 1—y. However,
in the first case 8—1+x > 0 (the equilibrium is indeterminate) while in the second case G(1—¢)—1+x < 0
(the equilibrium is determined). Furthermore, when ¢ tends to zero, Ay = —{=e(- ¢))[p+6(1 9l tends
to Ay and \| tends to —oco. Consequently, the unique equilibrium path tends to merge w1th the welfare-
maximizing path starting with ¢(0) = ¢ ¢, when 8 ~ 1 — x. In that case, Guo and Lansing policy is a

good approximation of the second best policy in the Benhabib and Farmer model.

However, it is clear on the simulations above that the loss in welfare for an agent maintaining cq ¢,
as a starting level of consumption (which is the case of the Guo and Lansing policy) is increasing with
the level of increasing returns. As this level goes up the “bunching effect” raises and theoretically may
offset the “concavity effect”: the welfare-maximizing path is less and less monotonic while the Guo and
Lansing tax policy leads the agents to smooth their consumption/investment plans.

The difference of utility between the optimal path and the path starting with a level of consumption
of cg¢, is maximum on the first period. Then, the gap tends to reduce but increases significantly
when the welfare-maximizing paths become non-monotonic. Thus, the Guo and Lansing policy appears
suboptimal (and all the more welfare-diminishing since the increasing returns are “low” or high): an
alternative stabilization policy must be found.

5.2 Alternative economic policy

Actually, the second best equilibrium can be selected through a stabilization policy ¢ la Saidi [2005b]
which is able to coordinate over time the agents on a given deterministic path.

Assume that the stationary equilibrium is indeterminate and that the government aims at coordinating
the expectations on a deterministic indeterminate path characterized by the initial level of consumption
and labor (Cy, Lg). The expected rate of returns on capital is 7o = aKg_lf/g. The economic policy
consists in subsidizing or taxing production such that the rate of returns on capital equals 7y by fixing a
tax rate 7y (possibly negative) at the first period. Firms maximize their profit I:

Iy = (1 —79)Yy — roKo — woLo,

with:
T0O = 1 — fQ/To.
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Since Ky and 7y are predetermined, the equality of the after-tax rental rate of capital to the after-tax
productivity of capital determines the quantity of labor at time 0:

L() = (f(]/CtKg)l/b = Eo.

Simultaneously, the couple (Ko, Lo) determines the equilibrium value of the first period after-tax real
wage satisfying the second first order condition of profit maximization:

(- o)

- (14)

wo = (1 — 7'0)
Finally, the first order condition (respect to labor) determines consumption at time 0, that is Cp, which
in turn determines the variation of capital and consumption at the next period via the law of motion of
capital and the Euler equation. If the agents are rational, and we assume they are, they cannot switch
to another equilibrium (which would be in contradiction with the FOCs) and are able to determine the
triple (K¢, Ly, Ct) at any time ¢. Of course, expectations can be coordinated by fixing the real wage or
the rental rate of any period, not especially the first one.

6 Conclusion

In this paper, we have shown that in a one-sector growth model with non-convex technology and pro-
ductive externalities it is possible to rank the different equilibrium paths according to the initial value
of consumption when the steady state is indeterminate. In the continuity of Christiano and Harrison’s
simulations, we have showed that welfare-improvement of stochastic sunspot equilibria is all the more
powerful in the earlier periods of time since they condition the long run behavior of consumption and
labor either by accelerating capital accumulation when the level of increasing returns is high (for a given
elasticity of labor) or by decelerating the accumulation when it is low. Large fluctuations are then likely
to be welfare-diminishing in the last case where the ”concavity effect” dominates the ”bunching effect”.
A direct implication of these findings is that progressive or countercyclical taxes able to pin down expec-
tations as those developed by Guo and Lansing [1998] are more likely to be welfare-diminishing compared
to any stochastic equilibrium when increasing returns are large since they smooth consumption and labor
and decelerate capital accumulation.

Our analysis raises a question that deserve further investigations. Can we say something about the
nature of the social planer’s allocation? All the equilibria we considered are inefficient since the agents do
not grasp the externality of production. In this case, the maximizing welfare deterministic equilibrium is
more or less monotonic according to the aggregate level of increasing returns. Christiano and Harrison
present an example of monotonic social planer’s allocation while for different values of the externalities
Dupor and Lenhert [2002] and Saidi [2005b] show that this allocation is discontinuous and cycling. It
can be conjectured that there is a close relationship between the monotonicity of the first best allocation
and of the decentralized optimal solution.

A Appendix

A.1 Slopes of the stable arms

The Jacobian matrix of the system formed by equation (3) and (4) is:

g I4+p)T -6 (pe—1)T+6
o ap ¥ ape ¥

where U = (p +6)/a, po = =200 1y = OeDO=D=8 40 py = 2 Let & = (vi4,v2:) T, i = {1,2},

; B+x—1’ B+x—1 B+x—1°
the eigenvectors of the system defined such that:
aul\II auglll - )\z V2; o 0 '

The slope of the stable arm associated to §; at the stationary equilibrium is vy; /v1;. We want to show

that: v v
ﬁ > ﬂ > 07
V12 V11
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or equivalently that the slope of the stable arm associated to & is steeper than the slope of the stable
arm associated to & at the stationary equilibrium.
According to system (15), notice first that:
vy A0 (L+ )V

Moreover, when Benhabib and Farmer’s condition for indeterminacy is satisfied, that is when f—1+yx > 0,
e —1 > 0and 1+ p; < 0. Since the trace is equal to the sum of the two eigenvalues, the following
relation holds for any 4,j = {1,2} with ¢ # j:
Vo
sign {021} = sign{—(14+pu)T+6+ N}
14
= sign{ap¥ — Trace(J) + \;}
= sign{ap2¥ — \;}.
Under Benhabib and Farmer’s condition for indeterminacy, both ape¥ and —\; are positive.
Finally since A; < Ag it follows immediately from equation (16) that the slope of the stable arm
associated to &3, vaa/v12, is steeper than the slope of the stable arm associated to &7, ’1)21/'1}11; If we

assume to start with an initial stock of capital lower (resp. greater) than its steady state value, k£(0) < 0
(resp. k(0) > 0) and from equations (9) and (10) it is easily deduced that co ¢, > co,¢, (resp. o, < Coe,)-

A.2 Monotonic paths

Monotonicity of consumption paths occurs provided the equation dé(t)/dt = 0 has no solution. This
means that there is no t € Rt such that for any (1, n2):

At Aot
niA1va1e™’ + n2dovgee”?’ = 0,

that is:

M S L O R VRS (17)
A2 — M v91k(0) — v11E(0) A2 va2

V22 Z}(O)*’Ulze(o)

A solution exists if and only if £ = o F(0)—vrs 8(0)

> 0. Define: ¢(0) = co¢, + €. In this case relation E

becomes 5
—V79E
E— 12

[V12V21 — V11092]k(0) — vi1v12E
where v;; < 0 for any 4, j = {1,2} (as shown in appendix A.1).
If £ > 0, equation (17) as a solution if and only if [v12v91 — v11v22]k(0) — v11v12¢6 < 0, that is for:

e > {7’21—””} k(0)
V11 V12

> €06 €00
or equivalently for:
C(O) > C0,&4 -
If € < 0, equation (17) as a solution if and only if [v1ov91 — vllvgg]%(O) — v11v12¢ > 0, that is for:

e < {7)22_”21} k(0)
V12 V11

< o8 T €06
or equivalently for:
c(0) < coe, — €7,

with e* = ¢ ¢, — co,¢,, Which is positive (resp. negative) according to Appendix A.1 provided K (0) < K,
(resp. K(0) > Kj).

Thus consumption paths have a monotonic behavior if and only if ¢y € [co ¢, —€*, co¢,] for K(0) < K,
and ¢y € [co¢,, Coe, —€¥] for K(0) > K.

13



A.3 Solution of some limits

The trace and determinant of the Jacobian matrix J are the following:

p+d(l—a)(l—a)l—x)
f—1+x
_ (p+0)B-(0+7)1-X)

Tr(J) = " 4]

Det(J) = (p+9)

When the condition for indeterminacy holds, one can see immediately that Tr(J) tends to —oco and
Det(J) tends to +o0o as 8 — 1 + x tends to zero. Moreover the two limits have the same “order” of
convergence. Now consider the following limits:

Det(J
| D) =T DT =42 ) — 1)
lim A = lim = lim —————— = -0
B—1—x B—1—x 2 B—1-x 2

Multiplying and dividing by Tr(J) — [Tr(J)]/1 - 45553, we get:

Tr(J) + |Tr(J)|,/1 — 42<4)

. . Tr(J)?
| Ay = 1
ﬁirlrlx 2 ,BJ{EX 2
. 2det J
= lim
B=1=X e J — |trJ| /1 — 4((2?]‘)]2
o Dal) _ (-a)lp+ 80— a)
- B—1—x T’I“(J) o (0% ’
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