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Abstract

In this paper we extend the Shapley-Shubik model to a two period financial economy and

essentially address the question of the existence of an equilibrium. More precisely, we show the

existence of nice equilibria, i.e. situation in which prices for both assets and commodities are

strictly positive. Even if the general lines of the proof are largely influenced by the paper of

Dubey-Shubik (1978), most of the arguments are new because of the financial nature of the

economy. It forces us to deal with a generalized Nash equilibrium and to proscribe the use of

arguments which only works with a single cash-in-advance constraint.
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1 Introduction

While there is, by now, an extensive literature devoted to games à la Shapley-Shubik (1977)

associated with static economies, such inquiry was less often addressed in the case of intertem-

poral economies populated by finitely many players facing some exogenous uncertainty, and

trading on financial markets, both in order to reallocate resources across periods and in order

to insure themselves against uncertainty1. We therefore fill this gap by studying some aspects

of a strategic game associated to a two-period financial economy. We are mainly concerned, in

this paper, with the issues of existence but of course a number of other related issues stay on

the research calendar2.

The question of the existence is quite important in this case. In fact, even when security

markets happen, by chance, to be complete, this result is new, and cannot be deduced from, say,

Dubey & Shubik’s (1978) paper. Indeed, it has been shown by Peck & Shell (1989) and latter

by Weyers (2000), that the two market structures – a complete set of contingent commodities

versus a complete set of Arrow securities – do not induce the same set of Nash equilibria.

More specifically, Peck & Shell (1989) show that, when there is fiat money, an interior Nash-

equilibrium allocation of the Arrow-securities game in which some income is transferred across

states cannot be a Nash-equilibrium of the corresponding contigent-commodities game. Weyers

(2000) completes this result by pointing out that the unique strategic equilibria which are com-

mon to the two market organizations are those involving no-trade in the first-period assets. In

the case of commodity-money, like in this paper, which is closer to Shapley & Shubik’s spirit,

the non-equivalence is even more abrupt: an equilibrium of a game may not be an equilibrium

of the other because it is simply not feasible !

Moreover, one can expect, following Koutsougeras (2003) or Koutsougeras &Papadopoulos

(2004)3, that arbitrage opportunities remain at equilibrium. This is not without consequences

on our existence proof. The lack of no-arbitrage conditions first eliminates, unlike in a Walrasian

GEI model, the ability to remove the financial assets by means of the Cass trick. It secondly bars

the opportunity to eliminate redundant assets, i.e. we cannot assume that the return matrix is of

full rank. Finally, and more severely, we know from the competitive setting that the absence of

arbitrage opportunities contributes, in some sense, to the “compactification” of set of reachable

portfolios. So under an unlimited short-sell assumption on the asset markets, one can expect

that the strategy sets are not compact. This is why we introduce an assumption of secured

lending4 which states loosely speaking that the future debt induced by selling assets today must

be covered in each states by the future holdings in numéraire.

1Strategic trading on financial markets has been explored, at our knowledge, by Peck & Shell (1989), Weyers
(1999), Giraud & Stahn (2003), Giraud &Weyers (2004) and Koutsougeras & Papadopoulos (2004)

2Some of them are mentioned in the last section of the paper.
3 In this last paper, Koutsougeras & Papadopoulos (2004) explicitly construct an example of an one commodity-

S-state economy in which the no-arbitrage condition is not satisfied at equilibrium. They however never check
the existence of an GEI Shapley-Shubik equilibrium. Our investigation therefore completes their work.

4See Sudderth, Karatzas & Shubik (1997)
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To be more precise, we consider, in this paper, a two period economy with numéraire asset à

la Geanokoplos-Polemarchakis (1986) and assume that both asset and commodity markets work

à la Shapley-Shubik (1977).

The first period works like a standard market game. The different agents have the oppor-

tunity to bid on the different asset trading posts under a standard cash-in-advance constraint.

But, in order to be consistent with the idea of borrowing and lending, we do not endow the

agents with initial asset holdings and, from that point of view, allow short sales.

The second period works in a slightly different manner. Like in a standard GEI approach, we

have to take into account the returns of the financial assets. But if we want to give the agents a

real opportunity to modify their future trades, these returns must be paid before the commodity

markets open. Since we work with numéraire assets, this modifies the cash-in-advance constraint

of each player and give her the opportunity to really reallocate her consumption stream. But this

modification of the Shapley-Shubik game is not without consequences. The second period state

contingent cash-in-advance constraints can no more be viewed as simple restriction imposed on

the strategy sets. These constraints are now affected by the asset allocation, or in other words,

by the choice of the other players. A Generalized Nash Equilibrium in the sense of Debreu (1952)

is therefore required.

But the introduction of assets also induces a new source of bankruptcy. An agent can go

bankrupt either by biding too much in a given state or by having, in some state of nature,

not enough cash to cover the debt that she contracted in the previous period. This is one

of the reasons why we introduce a secured lending assumption. This last one states that the

offers put on the different asset markets by a given agent when converted in future debt cannot

be, state by state, greater than her initial holding in money. The reader also notices that this

assumption introduces an upper bound on the short sales and thereafter gives us the opportunity

to compactify the first period strategy sets without making use of a no arbitrage condition. But

we must concede, following Peck & Shell (1989) (1990), that restrictions on short sales affect

the equilibria in market games. It reduces, in particular, the degree of liquidity of the financial

markets and contributes to inefficiency.

Within this setting, we basically concentrate our attention on the question of the existence

of a nice Shapley-Shubik equilibrium. This proof relies, like the one of Dubey-Shubik (1978), on

a standard fixed point argument contrary to the existence proof provided by Peck, Shell and

Spear (1992) which makes use of a mod 2 degree approach.

This paper is organized in the following way. In the second section, we describe the basic

setting of the paper. The third section is devoted to the definition of an equilibrium and its

relation to our general equilibrium setting with financial markets. We show the existence of an

ε−NE in section four and postpone the discussions the existence of ‘interior nice’ NEs to section
five. Concluding comments and open questions are gathered in the last section.
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2 The model

We first describe the economy underlying our framework, then we present the strategies available

to each player and we conclude this presentation by the construction of the outcome function

which specifies the mechanism on which this paper focuses.

2.1 The underlying economy

We consider a standard, two-period, exchange economy with numéraire assets (see Geanakoplos

& Polemarchakis (1986) for details). At t = 1, one of S ≥ 1 possible, uncertain states of Nature
occurs. For the sake of simpler notations, s = 0 stands for t = 0.

There are L + 1 ≥ 1 commodities at each state s ≥ 1. In fact there are L standard

consumption goods indexed by c = 1, . . . , L and an additional commodity which serves as a

numéraire. For simplicity, we assume that spot commodity markets c = 1, . . . , L only open at

t = 1, i.e. during the second market session5, in each state of Nature s ≥ 1. The commodity
space is thus RS(L+1)+1

+ and a consumption bundle (x,m) ∈ RS(L+1)+1
+ specifies an amount of

commodities x = (xs)
S
s=1 ∈ RSL

+ as well as of numéraires (ms)
S
s=0 ∈ RS+1

+ .

There are N ≥ 2 household, indexed by i = 1, . . . , N . Each of them is given a vector¡
ωi, μi

¢
∈ RS(L+1)+1

++ of initial endowments, and each households chooses a commodity bundle

in her consumption set RS(L+1)+1
+ . The tastes of agent i are defined by an utility function U i :

RS(L+1)+1
++ → R. Throughout this paper, we shall assume that each function U i is continuous,

quasi-concave, increasing, and satisfies the following standard boundary condition:6 ∀ (x,m) ∈
∂RS(L+1)+1

+ , U i(ωi, μ
i) > U i(x,m)

The financial market is composed of J ≥ 1 securities that can be exchanged at t = 0. One
unit of asset j promises, at date t = 1, rsj units of the numéraire commodity if state s occurs.

The vector rs ∈ RJ stands for (rsj)
J
j=1. A portfolio θ ∈ RJ generates the future income transfers

R · θ, where R is the S × J real matrix whose sth row is rs. Throughout the paper, we shall

impose that rs ≥ 0 for any s, and, to avoid trivialities7, that ∀s ∃j : rsj > 0 i.e. in each state

at least one asset pays positive returns and that ∀j ∃s : rsj > 0 i.e. each asset pays positive

returns in at least one state.

5We could allows for consumption of non-numéraire goods at t = 0, at the cost of more cumbsersome notations,
and without any improvement of the economic content.

6This condition can in fact be weakened. A restriction which asserts, as in Dubey & Shubik (1978), that there
are, for any good, at least to moneyed trader and at least two furnished traders would be enough. The boundary
condition simplies says that the previous condition is met for all commodities and all agents and slighly simplifies
the existence proof.

7The reader however notices that we do not assert that the return matrix R is of full rank. This directly
follows from Koutsougas & Papadopoulos’ results (2004). As the ‘law of one price’ is not satisfied, one can expect
that an asset whose returns are a linear combination of the returns of some others may have a price which is not
the same linear combination of the asset prices. In other words, redundant assets cannot be eliminated.
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2.2 The strategies

Both the security markets of period 0 and the spot commodity markets of period 1 are organized

according to the rules of a standard Shapley-Shubik game with numéraire. Each player’s i action

set is defined by: Ai :=
QS

s=0A
i
s, where:

Ai
0 :=

n
(bij , q

i
j) ∈ (RJ

+)
2 : ∀j = 1, . . . , J ,

PJ
j=1 b

i
j ≤ μi0 and R ·

¡
qij
¢J
j=1
≤ μi1

o
(1)

and

Ai
s :=

©
(bics, q

i
cs)c=1,...,L ∈ (RL

+)
2 : ∀c = 1, ..., L, qics ≤ ωics

ª
. (2)

In words, qij (resp. q
i
cs) is the quantity of asset j (resp. commodity c) that trader i offers for sale

in state 0 (resp. s). Similarly, bij (resp. b
i
cs) is i’s bid on security j (resp. commodity c) in state

0 (resp. s). The constraint
PJ

j=1 b
i
j ≤ μi0 represents the usual idea that individuals must finance

their bids on securities by sales of numéraire. Notice, however, the dissymmetric treatment of

the strategy sets at time t = 0 and t = 1. In fact:

1. While the offers in spot consumption goods are constrained by the physical impossibility

to exceed one’s initial endowments i.e. qics ≤ ωics, such a constraint cannot be imposed

on assets. Indeed, consistently with the usual GEI model, we did not provide households

with initial holdings in securities. A blind, physical constraint on assets would prevent any

trade in securities!

2. While the bids in assets are constrained by the initial holding in numéraire in state 0

i.e.
PJ

j=1 b
i
j ≤ μi0, a similar constraint for commodities cannot be imposed on the set of

strategies. In fact, as in a usual GEI model, assets induce transfers of numéraire across

time and states. This means, from a Shapley-Shubik point of view, that the agents have the

ability to reorganize their future ‘cash-in-advance’ constraints. But the final asset holdings

at the end of the first period result from strategic interactions. It is therefore impossible

to restrict the bids for consumption goods independently of the strategies chosen by the

other players.

3. Since an offer qij of security j by trader i is easily interpreted as meaning that i is taking a

short position with respect to security j and since qij is not bounded by initial endowments,

we have to make sure that too large short-sells are not allowed. In fact, in a standard GEI

model, this job is done by the well-known no-arbitrage condition, But as we know from

Koutsougeras & Papadopoulos (2004), such a trick can not hold in market games. This

is why we assume that the offers made by an agent are bounded by her capacity of re-

funding. Since these transfers of numéraire occur before the commodity markets open, we

assume, in the spirit of “secured lending”, that each short position must be covered by

future initial holdings in numéraire, i.e. R ·
³
qij

´J
j=1
≤ μi1.

While point 2 can be easily managed by introducing a Generalized Game (see Debreu 1952),

point 3 relies on a additional assumption which is not necessarily harmless. In fact , since Peck
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& Shell (1989) we know that restrictions on short sales affect the equilibria in market games. It

renders the markets less liquid (see Peck & Shell (1990)) in the sense that net trade can be small

relative to gross trade and, hence relative to overall market volume, so that prices are almost

unaffected by net trades. Moreover, it is obvious that this assumption forbids large short-sells

especially if the returns are high and the future money holding low. From that point of view, it

is not very surprising the no-arbitrage condition on the financial markets may not be satisfied

due to this lack of liquidity or even that our NE does not converge to a GEI as the number of

players grows because these restrictions are simply not present in these models. To our defense,

we nevertheless argue that this is one of the most natural way to extend the notion of cash-in-

advance to an intertemporal setting and from that point of view to stay as close as possible to

a standard Shapley-Shubik game which a numéraire good8.

2.3 Prices, endogenous constraints and outcomes

Given a profile of actions a = (ai, a−i) ∈ A := Ai ×
Q

j∈I\{i}A
j , “price vectors” for assets and

non-numéraire commodities are computed as follows:9⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀j = 1, . . . , J, πj =

P
i∈I b

i
jP

i∈I q
i
j

:=
Bj

Qj

∀s = 1, . . . , S,∀c = 1, . . . , L, πcs =

P
i∈I b

i
csP

i∈I q
l
cs

:=
Bcs

Qcs

(3)

and if Qj = 0 or Qcs = 0, we set respectively πj = 0 and πcs = 0. The final holding of player i

in security j is then given by:

θij(a) :=

⎧⎪⎨⎪⎩
bij
πj
− qij if πj 6= 0

−qij else
, (4)

and his final allocation in numéraire is:

mi
0(a) = μi0 −

JX
j=1

bij +
JX
j=1

πjq
i
j . (5)

The trading process is very simple: the total amount Qj =
P

i∈I q
i
j of security j which is offered

is allocated to traders in proportion to their shares of the bids for asset j. Player’s i share of

the bids at trading-post j is
bij
Bj
, where Bj =

P
i∈I b

i
j . Thus, the gross receipts of security j

for agent i are
bijQj

Bj
, while the gross numéraire receipts on post j for player i is qij · πj . Given

our conventions, and consistently with the usual Shapley-Shubik games, it is assumed that, if

there are no offers on post j, all numéraire bids are ‘lost’. Finally, by a standard convention of

8We are nevertheless conscious that these drawbacks can be removed by shifting to a fiat money game à la
Peck, Shell & Spear (1989). But this requires a quite different existence proof which is on our agenda.

9We define x
0
= 0 for any real number x.
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notation, we denote B−ij :=
P

h∈I\{i} b
h
j and Q−ij :=

P
h∈I\{i} q

h
j the total amount of bids and

offers on market j except those of i.

At that point, we can now come back to point 2 of the preceding subsection. In fact,

in each state s ≥ 1, player i faces an additional ‘cash-in-advance’ constraint, meaning that

she must finance her bids for commodities by her initial endowment in state s-numéraire and

by the net income of her portfolio or, conversely, that her net holding in numéraire, in state

s, i.e. after the transfers induced by the asset holdings, covers her bids i.e. ∀s = 1, . . . , S,PL
c=1 b

i
cs ≤ μis +

PJ
j=1 rsjθ

i
j . This means that the second period feasible bids are linked to

the strategies chosen in the first period via the asset holding, we shall therefore consider a

generalized game by introducing a correspondence αi : A−i /→ Ai which describes the set of

admissible strategies of agent i given the strategies of the other players. This correspondence is

defined as follows ∀i,∀a−i ∈ A−i,

αi(a−i) :=

⎧⎨⎩ai ∈ Ai :
LX
c=1

bics ≤ μis +
JX

j=1

rsjθ
i
j(ai, a−i) for all s = 1, . . . , S

⎫⎬⎭ (6)

It finally remains to define the final allocation of player i in commodity c = 1, . . . , L in state

s = 1, . . . , S given by:

xics(a) :=

⎧⎨⎩ ωics − qics +
bics
πcs

if πcs 6= 0

ωics − qics else
(7)

and her final allocation in numéraire good in state s = 1, . . . , S given by

mi
s(a) := μis +

JX
j=1

rsjθ
i
j(a)−

LX
c=1

bics +
LX
c=1

πcsq
i
cs (8)

3 The equilibrium : definition and discussion

If one denotes by ϕ : A→
³
RLS
+ ×RS+1

+

´N
the outcome function given by

ϕ(a) =
¡
ϕi(a)

¢
i∈I =

³¡
xics(a)

¢L,S
c=1,s=1

,
¡
mi

s(a)
¢S
s=0

´
i∈I

one typically deals with a generalized game G = hϕ(a),
¡
αi(a−i)

¢N
i=1
i and a natural extension of

Shapley-Shubik approach to the case of financial market is to seek for a Nash Equilibrium (NE)

:

Definition 1 An action profile ã ∈ A is a NE of G iff the following holds for each i ∈ I:

∀ai ∈ αi(ã−i), U i
¡
φi(ãi, ã−i)

¢
≥ U i

¡
φi(ai, ã−i)

¢
As usually in Shapley-Shubik’s games, we observe that :
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Remark 1 The game is individually rational because each player has the opportunity to defend
her initial endowments whatever the strategies of the others are by playing ai = 0.

Remark 2 If everybody defend her initial endowments and decides nor to bid or to offer assets,
then a trivial no-trade equilibrium occurs. In this case, as in standard Shapley-Shubik model,

nobody can improve her situation by an unilateral deviation because she has no partner to trade

with.

From that point of view, we are sure that an equilibrium exists since the trivial no-trade

satisfies this requirement. But within our two period setting with financial markets, we can even

identify less trivial but nevertheless interesting cases of, say, ‘extended’ trivial equilibria.

First of all, let us consider a economy in which L commodities are available tomorrow in

each state and say that on the first L1 markets are inactive in sense that they are nor bids

or offers. Now take a Shapley-Shubik GEI equilibrium of an economy in which only L − L1

commodity markets are available and in which the utility of the different players is the same as

in the previous economy and in which the consumption levels for the L1 first goods are identified

to the initial endowments. It is now a matter of fact to observe that any equilibrium profile

of strategies of the small economy completed by a zero bid and offer strategy of the first L1
commodity markets is a NE of the initial economy. It makes therefore sense to restrict our

attention to equilibria with the property that every commodity markets are active.

But this has also another consequence :

Remark 3 The set of equilibria of our economy contains the set of Shapley-Shubik equilibria
of the associated S-state one (numéraire) commodity economy. Moreover since our result is

independent of the number of commodities, it also provides existence for this last case.

From that point of view, our result both completes and extends the paper of Koutsougeras and

Papadopoulos(2004) because our result makes sure the an equilibrium exists in their case and

offers a way to extend their examples to economies with several commodities.

Let us now consider a polar situation in which each player decides nor to bid or to offer on

the asset markets. If the commodity markets are nevertheless active, we can assert that :

Remark 4 Let us assume the utility functions are of the VNM type and let us compute a

Shapley-Shubik equilibrium of an one period economy in which each agent is characterized by

her state contingent utility functions and owns ωis. If ās =
³
bics, q

i
cs

´I,L
i=1,c=1

denotes this static

equilibrium then any profile of strategies with the property that (i) bij = qij = 0 ∀i, j and (ii) ∀s
as = ās, is a Shapley-Shubik equilibrium of our economy.

We can therefore claim, at least in the VNM case, that the set of equilibrium is quite huge

because it trivially contains all the equilibria of the associated state by state static economy. We
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even suspect that a similar result can be obtained without VNM utilities. In order to motivate

that point, let us assume that nobody puts offers nor bids on the asset markets. By doing so,

we deal, in some extend, with a standard one period Shapley-Shubik equilibrium. The only

difference is that the players face several independent cash-in-advance constraints. But if one

quickly goes through Dubey-Shubik ’s existence proof (1978), one can be easily convinced that

the existence result extends up to some slight adjustments. In fact, as long as the asset markets

are inactive, the agents cannot transfer numéraire across states in order to change their cash-in-

advance constraints. These constraints therefore remains independent and simply induce some

additional restrictions on the strategy sets. This is, of course, not the case if at least one asset

market is active.

In any case this previous discussion tells as that there is a large class of NE-equilibria in

which several markets are inactive. By inactive, we mean, of course, a trading post on which at

least one agent has the opportunity to put bids and/or offers, but cannot improve her situation

by an unilateral deviation because the other players put neither a bid nor an offer. This is why

we will focus in our existence proof on situations in which each market is active. In other words

we say that :

Definition 2 A NE is called “nice” iff all trading-posts are active.

But let us remember that trivial NE occur when everybody bids 0 and supplies 0 on at least

one trading-post. In other words, if all the players believe that a market will be extremely thin,

then this market will be endogenously closed, and their beliefs will turn out to be self-justified.

Consequently, the question is whether there exist non-trivial beliefs about market ‘thickness’

which are self-enforcing.

For this purpose, we will introduce, in the next section, an ε modification of G, denoted Gε

and prove the existence of an ε − NE. It finally remains in section 5 to check that the limit,

as ε → 0, of a sequence of NE’s of Gε is also a nice NE of G. This requires, since G is highly

discontinuous, that the price sequence converges (at least for a subsequence) but not to 0.

4 The existence of ε−Nash Equilibria

In this section, we prove the existence of a ε−Nash equilibrium. But before entering into more
technical arguments, let us quickly present the different steps of the proof and the major changes

induced by the introduction of financial assets.

4.1 A guideline to the ε−Nash existence proof

First of all, let us introduce Gε, the ε modification of G. This game is obtained by assuming as

in a standard Shapley-Shubik game that, say, some outside agency places a fixed bid ε > 0 and

a fixed supply ε > 0 in each of the (J +LS) trading-posts. This rules out all the discontinuities

8



in the outcome function and we write ϕε : A→
³
RLS
+ ×RS+1

+

´N
for the corresponding strategic

outcome functions. This one is given by :

ϕε(a) =

⎛⎜⎜⎜⎜⎜⎝
³
ωics − qics +

(Qcs+ε)
(Bcs+ε)

bics

´L,S
c=1,s=1

μi0 −
PJ

j=1 b
i
j +

PJ
j=1

(Bj+ε)
(Qj+ε)

qijµ
μis +

PJ
j=1 rsj

µ
bij

qij+Q
−i
j +ε

bij+B
−i
j +ε

− qij

¶
−
PL

c=1 b
i
cs +

PL
c=1

(Bcs+ε)
(Qcs+ε)

qics

¶S

s=1

⎞⎟⎟⎟⎟⎟⎠
n

i=1

(9)

is obtained from (5), (7) and (8) by replacing Bj (resp. Qj , Bcs, Qcs) by Bj + ε (resp. Qj + ε,

Bcs + ε, Qcs + ε). The same can of course be done with (6) the correpondence which associates

to the strategies of say player i her set of available strategies. This one becomes ∀i,∀a−i ∈ A−i,

αiε(a
−i) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ai ∈ Ai :
LX
c=1

bics ≤ μis +
JX

j=1

rsj

µ
bij

qij+Q
−i
j +ε

bij+B
−i
j +ε

− qij

¶
| {z }

:=θij,ε(a
i,a−i)

for all s = 1, . . . , S

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (10)

Thus :

Remark 5 In order to get rid of the discontinuity induced by rule (7) and (8) and in order
take into account that the second period feasible bids are link to the strategies chosen in the first

period via the asset holding, we shall consider a generalized game Gε and study the existence of

a ε−Nash given by an action profile ã ∈ A such that for each i ∈ I:

∀ai ∈ αiε(ã
−i), U i

¡
φiε(ã

i, ã−i)
¢
≥ U i

¡
φiε(a

i, ã−i)
¢

Moreover it is a matter of fact to observe that if ε → 0 and the different prices converges to

non-zero prices then the limit profile of strategies is a nice NE of our economy.

Let us now observe that the introduction of a generalized game does not solve all the prob-

lem. At that point, we cannot assert that Ai is compact. This is were the “secured leading"

assumption enters into the picture. In fact

Remark 6 Under the “secured leading" assumption, i.e. R ·
³
qij

´J
j=1
≤ μi1, we are sure that

the offers for assets are bounded from above for every player. Since the bids on these markets

are also bounded by the cash-in-advance constraint, we can expect that the bids of the commodity

markets are also bounded whatever the strategies of the other players are. In other words, that

we can restrict our attention to Ci ⊂ Ai a compact convex subset of the set of strategies of each

player

We even show with standard arguments that αiε(a
−i) is continuous. But, if one takes as

given the strategies chosen by the other players, one also notices that the restrictions on the

9



feasible strategies of a given player are typically non-linear. Due to the transfers of numéraire,

αiε(a
−i) is not necessarily convex-valued. This definitively rules out a direct study of the best

response of each player subject to the constraints given by αiε(a
−i). To circumvent this problem,

we simply move the study of the best reply from the strategy set to the feasible final allocation

set by observing that :

Remark 7 As long as (i) we consider an ε-equilibrium10 and (ii) the bids and offers of the

other players are taken as given, the final holdings in numéraire can be expressed as a function

of the final consumption xi, the portfolio holding θi and the strategy a−i of the other players.

More precisely mi(x, θ, a−i) is given by :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
mi
0

¡
θ, a−i

¢
= μi0 +

JX
j=1

³
B−ij + ε

´
θj

Q−ij + ε− θj

∀s = 1, . . . , S, mi
s

¡
x, θ, a−i

¢
= μis +

LX
c=1

¡
B−ics + ε

¢ ¡
ωics − xcs

¢
Q−ics + ε+ ωics − xcs

+
JX

j=1

rsjθj

The utility of agent i can therefore be written as V i(x, θ, a−i) := U i(x,mi
¡
θ, a−i

¢
)

Moreover, one also observes that :

Remark 8 Since the set of reachable allocations
¡
xi, θi

¢
is obtained by a correspondence Bi :

C−i /→ RLS
+ ×RJ defined on the strategies selected by the other players, i.e.

Bi
¡
a−i
¢
=
©¡
xi, θi

¢
∈ RLS

+ ×RJ : ∃ai ∈ αiε(a
−i), xi = xiε

¡
ai, a−i

¢
, θi = θiε

¡
ai, a−i

¢ª
it remains to study max(x,θ)∈Bi(a−i)V

i(x, θ, a−i)

If one checks that this new choice set is non-empty, compact, convex and continuous and that

V i is strictly quasi-concave on the allocation space, this new problem has a unique solution. It

remains to move back to the strategy space in order to compute a best response correspondence

and to observe that the basic assumption of Kakutani’s fixed point theorem are satisfied. This

proves the existence of a NE of the generalized game Gε. Let us now detail the different step of

the proof.

4.2 From non-convex strategy sets to convex choice sets

First of all let us make sure that we can restrict the strategy set of each agent to Ci, a non-empty,

convex and compact set, and therefore only consider strategy profiles
¡
ai, a−i

¢
∈ C = Ci ×C−i

with C−i =
Q

h∈I\{i}C
h.

10The fact that we considere a ε−NE is crucial here. It makes sure that ∀a−i, Q−ij +ε−θj = Qj+ε

Bj+ε
(B−ij +ε) > 0

and Q−ics + ε+ ωics − xcs =
Qcs+ε
Bcs+ε

(B−ics + ε) > 0

10



Lemma 1 Under “secured lending”, ∃Ci ⊂ Ai a non-empty convex and compact set such that

∀ε > 0 and ∀a−i ∈ A−i, αiε(a
−i) ⊂ Ci.

Proof : By “secured lending”, agent i’s asset offers verify Rq ≤ μi1 and since R ≥ 0 and R is non trivial
(i.e. ∀j ∃s, rsj > 0), we can say that qij ≤

maxs=1,...,S{μis}
mins=1,...,S{rs,j :rs,j 6=0} . So, by taking the largest upper bound

over i and j, we can say that ∀i, j, qij ≤ q̄. Now, notice that the final holding θiε,j(B
−i
j , Q−ij , qij , b

i
j) =µ

bij

µ
qij+Q

−i
j +ε

bij+B
−i
j +ε

¶
− qij

¶
of player i in asset j decreases in qij and B

−i
j while it increases in bij and Q

−i
j . But

qij and B
−i
j are bounded from below by 0 while bij and Q

−i
j are respectively bounded from above by μi0 and

(n− 1) q̄. It follows that θiε,j(B−ij , Q−ij , qij , b
i
j) ≤ μi0

³
(N−1)q̄+ε

μi0+ε

´
≤ θisup := μi0max

n
1, (N−1)q̄

μi0

o
. Moreover

we deduce from the state s strategic “cash-in-advance” constraint (5) and from the non negativity of the
returns rs,j that each bid bics in state s is bounded from above by b̄is := μis +maxj∈J{rj,s}θisup > 0. It
now remains to construct Ci := Ai

0 ×
QS

s=1 Ā
i
s with :(

Ai
0 :=

n
(bij , q

i
j) ∈ (RJ+)2 : ∀j = 1, . . . , J ,

PJ
j=1 b

i
j ≤ μi0 and R ·

¡
qij
¢J
j=1
≤ μi1

o
∀s = 1, . . . , S Āi

s =
©
(bics, q

i
cs)c=1,...,L ∈ (RL+)2 : ∀c = 1, ..., L, qics ≤ ωics and bics ≤ b̄is

ª
and to observe that Ci ⊂ Ai is non-empty convex and compact with the property that ∀ε > 0 and

∀a−i ∈ A−i, αiε(a
−i) ⊂ Ci.

¥

Let us now restrict the correspondence αiε(a
−i) to C−i and let us study its properties. Since

αiε(a
−i) is defined through weak inequalities and since each agent always has the opportunity

not to trade, we can assert that :

Lemma 2 ∀i, αiε : C−i /→ Ci is continuous and takes non-empty and compact values.

Proof : Let us recall that :

αiε(a
−i) =

(
a ∈

¡
RLS+J+

¢2
:
qics ≤ ωics, R ·

¡
qij
¢J
j=1
≤ μi1,

PJ
j=1 b

i
j ≤ μi0

∀s,
PL

c=1 b
i
cs ≤ μis +

PJ
j=1 rsjθ

i
ε,j

¡
ai, a−i

¢ )

It is immediate that αiε(a
−i) is non-empty because 0 ∈ αiε(a

−i). Moreover as long as
¡
ωi, μi

¢
À 0, this

set also has a non-empty interior. Since αiε(a
−i) is defined through weak inequalities and θiε is continuous

in ai, αiε(a
−i) is closed-valued, hence compact because αiε(a

−i) ⊂ Ci (see lemma 1) . But θiε is also

continuous in a−i, it is then a routine matter to verify that αiε has a closed graph. Since α
i
ε maps into

a compact set Ci, it follows (see Hildenbrand (1974 prop 2 p23) that αiε is also upper-semi-continuous

(u.s.c.). It now remains to verify that αiε is lower-semi-continuous (l.s.c.). So let
¡
ai0, a

−i
0

¢
∈ C with

the property that ai0 ∈ αiε(a
−i
0 ) and let

¡
a−in
¢
→ a−i0 . Remember that θ

i
ε, is continuous in a−i. As a

consequence if ai0 ∈ int
¡
αiε(a

−i
0 )
¢
, then ∃N ∈ N, ∀n > N , ai0 ∈ αiε(a

−i
n ). In other words the sequence

ain = 0 for n ≤ N and ain = ai0 for n > N has the property that ∀n, ain ∈ αiε(a
−i
n ) and ain → ai0. Let us

now suppose that ai0 ∈ ∂
¡
αiε(a

−i
0 )
¢
. Because αiε(a

−i) has a non-empty interior, let ai1 ∈ int
¡
αiε(a

−i
0 )
¢
. As

before ∃N ∈ N, ∀n > N , ai1 ∈ αiε(a
−i
n ). Now consider the segment

£
ai0, a

i
1

¤
, either it belongs to αiε(a

−i
n )

or it meets its boundary because
£
ai0, a

i
1

¤
is connected. We can therefore define

¡
ain
¢
by ain = 0 for n ≤ N

and for n > N , ain = ai0 if
£
ai0, a

i
1

¤
⊂ αiε(a

−i
n ) or a

i
n = argminai∈∂αiε(a

−i
n )∩[ai0,ai1]

°°ai − ai0
°° else.

11
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But we cannot make sure that αiε is a convex set. To circumvent this difficulty, we largely make

use of remark 7. It order to precise this point, let us construct, ∀i ∈ I, the correspondence

Bi : C−i /→ RLS
+ ×RJ . which associates to any strategy of the other players the set of reachable

commodity and asset allocations. This relation is given by :

Bi
¡
a−i
¢
=
©¡
xi, θi

¢
∈ RLS

+ ×RJ : ∃ai ∈ αiε(a
−i), xi = xiε

¡
ai, a−i

¢
, θi = θiε

¡
ai, a−i

¢ª
We observe that :

Lemma 3 ∀i, Bi : C−i /→ RLS
+ × RJ is continuous and takes non-empty, compact, convex

values.

Proof : Let us first remember that ∀a−i ∈ C−i, 0 ∈ αiε(a
−i) hence by the definition of xiε(a)

and θiε(a) we know that
¡
ωi, 0

¢
∈ Bi

¡
a−i
¢
. Now let Ki : C−i /→ A be such that Ki(a−i) :=©

a ∈ A : a =
¡
ai, a−i

¢
for all ai ∈ αiε(a

−i) and a−i ∈ C−i
ª
. Since by lemma 2, αiε(a

−i) is continuous
and takes compact values , it is obvious that Ki(a−i) shares the same properties. Now remark that
Bi
¡
a−i
¢
=
©¡
xi, θi

¢
∈ RLS+ ×RJ : xi = xiε (a) , θ

i = θiε (a) for a ∈ Ki(a−i)
ª
. Because xiε(a) and θiε(a)

are continuous functions, it follows that Bi
¡
a−i
¢
is continuous and takes compact values.

It remains to check that ∀a−i ∈ C−i, Bi
¡
a−i
¢
is a convex set. So let

³
x̄i, θ̄

i
´
and

³
x̃i, θ̃

i
´
be

in Bi
¡
a−i
¢
and let λ ∈ [0, 1]. If

¡
xi,c, θi,c

¢
:= λ

³
x̄i, θ̄

i
´
+ (1 − λ)

³
x̃i, θ̃

i
´
∈ Bi

¡
a−i
¢
, the result is

obtained. This means that we have to exhibit a strategy ai ∈ αiε(a
−i) of player i such that

¡
xi,c, θi,c

¢
=¡

xiε
¡
ai, a−i

¢
, θiε

¡
ai, a−i

¢¢
. But before starting its construction, let us keep in mind that

¡
āi, a−i

¢
and¡

ãi, a−i
¢
respectively induce

³
x̄i, θ̄

i
´
and

³
x̃i, θ̃

i
´
and let us observe that the allocation rule is, for each

item of trade, decreasing in the offer and increasing and concave in the bid made by agent i.
Let us first concentrate on the commodity cs. We know by construction that x̄iε,cs = xiε,cs

¡
b̄ics, q̄

i
cs, a

−i¢
and x̃iε,cs = xiε,cs

³
b̃ics, q̃

i
cs, a

−i
´
. So let us define qccs := λq̄ics+ (1− λ)q̃ics and q−cs := min

©
q̄ics, q̃

i
cs

ª
and let

us observe that :

ωics − q̄ics ≤ x̄iε,cs ≤ xiε,cs
¡
b̄ics, q

−
cs, a

−i¢ and ωics − q̃ics ≤ x̃iε,cs ≤ xiε,cs

³
b̃ics, q

−
cs, a

−i
´

By a convex combination of this inequalities, we obtain that :

ωics − qccs ≤ xi,ccs ≤ λxiε,cs
¡
b̄ics, q

−
cs, a

−i¢+ (1− λ)xiε,cs

³
b̃ics, q

−
cs, a

−i
´

Since the allocation rule is concave in the bid of agent i, we deduce that :

ωics − qccs ≤ xi,ccs ≤ xiε,cs

³
λb̃ics + (1− λ)b̄ics, q

−, a−i
´

So let bccs := λb̃ics + (1 − λ)b̄ics, and let be f : [0, b
c
cs] → R be a continuous function given by f(b) =

xiε,cs
¡
b, q−cs, a

−i¢. Because f(0) = ωics − q−cs and f(bccs) ≥ xi,ccs , two cases happen :

• if f(0) ≤ xi,ccs there exists by the intermediate value theorem bics ∈ [0, bccs] such that xiε,cs
¡¡
bics, q

−
cs

¢
, a−i

¢
=

xi,ccs

12



• if f(0) > xi,ccs , choose bics = 0 and consider the function g :
£
q−cs, q

c
cs

¤
→ R given by g(q) =

xiε,cs
¡
0, q, a−i

¢
. Because g(q−) = f(0) > xi,ccs and g(qc) = ωics − qccs ≤ xi,ccs , there exists again

qics ∈
£
q−cs, q

c
cs

¤
such that xiε,cs

¡¡
0, qics

¢
, a−i

¢
= xi,ccs

The reader now notices that this argument can be reproduced for each commodity in each state. The
same argument even applies to the assets as long as one sets ωics = 0 and replaces x

i
ε,cs by θ

i
ε,j . It follows

that ∃ai ∈
¡
RLS+J

¢2
such that

¡
xi,c, θi,c

¢
=
¡
xiε
¡
ai, a−i

¢
, θiε

¡
ai, a−i

¢¢
. It now simply remains to verify

that ai ∈ αiε(a
−i). To make that point let us first remember that, by construction, āi and ãi belong to

αiε(a
−i). This means that :

• R
¡
q̄ij
¢J
j=1
≤ μi1 and R

¡
q̃ij
¢J
j=1
≤ μi1. But we know that by construction

¡
qij
¢J
j=1
≤
¡
qcj
¢J
j=1

:=

λ
¡
q̄ij
¢J
j=1

+ (1− λ)
¡
q̃ij
¢J
j=1

and that, R ≥ 0. It follows that R
¡
qij
¢J
j=1
≤ μi1

•
PJ

j=1 b̄
i
j ≤ m̄i

0 and
PJ

j=1 b̃
i
j ≤ m̄i

0 but, again, b
i
j ≤ bcj := λb̃ij + (1− λ)b̄ij , hence

PJ
j=1 b

i
j ≤ m̄i

0.

• ∀c, s, q̄ics ≤ ωcs and q̃ics ≤ ωcs. It immediately follows that ∀c, s, qics ≤ λq̄ics + (1− λ)q̃ics ≤ ωcs

•
PL

c=1 b̄
i
cs ≤ m̄i

0 +
PJ

j=1 rsj θ̄
i
j and

PL
c=1 b̃

i
cs ≤ m̄i

0 +
PJ

j=1 rsj θ̃
i

j. Since by construction θi =

θiε
¡
ai, a−i

¢
= λ · θ̄i + (1 − λ) · θ̃i and bics ≤ bccs := λb̃ics + (1 − λ)b̄ics, it follows that

PL
c=1 b

i
cs ≤

m̄i
0 +

PJ
j=1 rsjθ

i
j

Thus one can conclude that ai ∈ αiε(a
−i) or, in other words, that Bi

¡
a−i
¢
is convex.

¥

4.3 Back to strategies

Convexity can therefore be restored in the set of all reachable commodity and portfolio alloca-

tions as long as one takes as given, the strategies of the other players. We can now explicitly

make use of remark 8 by observing that each agent optimal consumption and portfolio allocation

in response of the strategies of the other players is given by :

OCi
¡
a−i
¢
=

½³
x̂i, θ̂

i
´
∈ RLS

+ ×RJ :
³
x̂i, θ̂

i
´
∈ arg max

(x,θ)∈Bi(a−i)
V i(x, θ, a−i)

¾
Now remember that the numéraire is strictly desired in each state and that U i(x,m) is quasi-

concave. Because mi(x, θ, a−i) (see remark 7) is obviously strictly concave in (x, θ), one can

expect that V i(x, θ, a−i) is strictly quasi-concave with respect to (x, θ). But this implies that :

Lemma 4 The optimal choice function OCi : C−i → RLS
+ × RJ is, for all i, a continuous

function.

Proof : Since ûi(x, θ, a−i) is continuous and Bi(a−i) is continuous and takes compact values, it is well

known (see Hildenbrand (1974) p 30) that OCi : C−i /→ RLS+ × RJ is non-empty, compact-valued and
u.s.c. But Bi(a−i) is also convex, it therefore remains to verify that V i(x, θ, a−i) is strictly quasi-concave
in (x, θ) in order to conclude that OCi(a−i) is a continuous function. So, let us choose λ ∈ ]0, 1[ ,

¡
x0, θ0

¢
and (x”, θ”) and and let us construct (xc, θc) = λ

¡
x0, θ0

¢
+ (1 − λ) (x”, θ”). Because (

B−ij +ε)θj
Q−ij +ε−θj

and

(B−ics +ε)(ω
i
cs−xcs)

Q−ics +ε+ω
i
cs−xcs

are strictly concave function with respect respectively to θj and xcs, it is a matter of

13



fact to verify that m(x, θ, a−i) is strictly concave in (x, θ). Moreover because U i is increasing in m and
quasi-concave in (x,m), we have :

V i(xc, θc, a−i) = U i
¡
xc,m(xc, θc, a−i)

¢
> U i

¡
xc, λm(x0, θ0, a−i) + (1− λ)m(x”, θ”, a−i)

¢
≥ min

©
U i
¡
x0,m(x0, θ0, a−i)

¢
, U i

¡
x”,m(x”, θ”, a−i)

¢ª
= min

©
V i
¡
x0, θ0, a−i

¢
, V i

¡
x”, θ”, a−i

¢ª
V i(x, θ, a−i) is therefore strictly quasi-concave in (x, θ).

¥

In order to construct the best reply of each player, it remains to associate to each optimal

consumption and portfolio choice the set of all best replies, that is the set of all strategies whose

the outcome is precisely this optimal choice. For that purpose, let us introduce ∀a−i ∈ C−i, the

correspondence σi :=
¡
σix × σiθ

¢
: RLS

+ ×RJ × C−i /→ Ci defined as follows :

σiθ(x, θ, a
−i) : =

n¡
bij , q

i
j

¢J
j=1
∈
¡
RJ
+

¢2
: θ = θiε

¡
ai, a−i

¢o
∩Ai

0

σix(x, θ, a
−i) : =

n¡
bics, q

i
cs

¢L,S
c=1,s=1

∈
¡
RLS
+

¢2
: x = xiε

¡
a−i, ai

¢o
∩A1 (θ)

withA1 (θ) =
n¡

bics, q
i
cs

¢L,S
c=1,s=1

∈
QS

s=1 Ā
i
s | ∀s = 1, . . . , S

PL
c=1 b

i
cs ≤ ωis0 +

PJ
j=1 rjsθ

i
j

o
. More-

over we observe that :

Lemma 5 For all
¡
x, θ, a−i

¢
such that (x, θ) ∈ Bi(a−i), σi : RLS

+ × RJ × C−i /→ Ci takes

non-empty, compact, convex values

Proof : σi takes, by construction, non-empty values as long as (x, θ) ∈ Bi(a−i). Since (i) σi(x, θ, a−i)

is a subset of Ci, a compact set, (ii) θiε
¡
ai, a−i

¢
and xiε

¡
a−i, ai

¢
are both continuous functions and (iii)

A1 (θ) is a closed set for each θ, we can also conclude that σi takes compact values. It remains to check that

σi takes convex values. So let us first observe that the condition θ = θiε
¡
ai, a−i

¢
is equivalent to ∀j, qij =

Q−ij +ε−θj
B−ij +ε

bij − θj . It follows that Θ(x, θ, a−i) :=
n¡

bij , q
i
j

¢J
j=1
∈
¡
RJ+
¢2
: θ = θiε

¡
ai, a−i

¢o
is a convex set.

By a similar argument, we can also assert that X (x, θ, a−i) :=
n¡

bics, q
i
cs

¢L,S
c=1,s=1

∈
¡
RLS+

¢2
: x = xiε

¡
a−i, ai

¢o
is also convex. It now remains (i) to remember that Ai

0 is convex (ii) to notice that A1 (θ) is also convex.

Since the intersection and the product of convex set remain convex, we conclude that σi takes convex

values.

¥

It remains to combine OCi
¡
a−i
¢
and σ

¡
x, θ, a−i

¢
in order to define each agent best reply

BRi : C−i /→ Ci which is given by :

BRi
¡
a−i
¢
=
©
ai ∈ Ci : ai ∈ σi

¡
OCi

¡
a−i
¢
, a−i

¢ª

14



This correspondence is by lemma 5 non empty compact and convex valued. It simply remains

to check that BRi
¡
a−i
¢
is u.s.c. in order to make sure that BR : C → C with BR(a) =¡

BRi
¡
a−i
¢¢n

i=1
admits a fixed point or, in other words to assert that :

Theorem 1 Every generalized game Gε admits an ε−NE.

Proof : In order to verify that BRi
¡
a−i
¢
is u.s.c., let us take a sequence

¡
a−in
¢
→ a−i0 and a sequence¡

ain
¢
with the property that ∀n, ain ∈ BRi

¡
a−in
¢
. Because ain ∈ Ci, a compact set,

¡
ain
¢
admits a

converging subsequence and let ai0 be its limit. Now let ϕ
i
ε(a
−i
n , ain) be the sequence of portfolios and

commodity allocations obtained with (a−in , ain). By construction ϕiε(a
−i
n , ain) = OCi

¡
a−in
¢
for all n. But

ϕiε and OC
i are both continuous function hence ϕiε(a

−i
0 , ai0) = OCi

¡
a−i0
¢
. It follows that ai0 ∈ BRi

¡
a−i0
¢

or, in other words, that BRi
¡
a−i
¢
is u.s.c.

¥

5 The existence of “nice” Nash equilibria

The purpose of this section is to show that a “nice” NE can be obtained as a limit of a sequence

of ε − NE as ε → 0. This must however be done carefully because a Shapley-Shubik game

contains a lot of discontinuities which are not present in the sequence of ε − games that we

consider. Some preliminary remarks clarify this point by putting forward the idea that each

ε−NE price must be bounded from above and from below. This point is then checked for both

the commodity and the asset prices. We finally prove our main existence result.

5.1 Some preliminary remarks

The existence of a nice Shapley-Shubik equilibrium follows, a priori, from a very simple idea :

we take a sequence
³¡
ãiε
¢I
i=1

´
ε
of ε − NE and push ε → 0. Lemma 1 even tells us that every

ε−NE belongs to C a compact subset of the strategy space whose definition is independent of

ε. Hence :

Remark 9 Every sequence
³¡
ãiε
¢I
i=1

´
ε
of ε −NE with the property that ε → 0 admits a con-

verging subsequence (css for short).

But this does not mean that this subsequence converges to a NE of G, our Shapley-Shubik

game with financial markets. In fact, G contains discontinuities in both the allocation rule and

the player’s correspondences of choice. So even if these ones are, by construction, removed in

Gε they reappear at the limit. This is why we really have to make sure that we deal, at the

limit, with a Shapley-Shubik equilibrium.

In order to illustrate this point, let us take a converging sequence aε ∈ A of actions with

the property that ∀i, aiε ∈ αiε(a
−i
ε ), let us consider a generic trading post and let us denote

respectively by ϕit,ε, ϕ
i
m,ε player’s i net trade and money allocation, and by pε the induced price

sequence. Since the sequence of actions is, say, feasible, it is easy to check that both ϕit,ε and
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ϕim,ε belong to a compact set, hence admit both a converging subsequence of limit ϕ
i
t,0 and ϕ

i
m,0.

But is this ε−allocations at limit the same as the one predicted by the Shapley-Shubik rule ?
The answer is unfortunately no. But :

Remark 10 If the sequence pε of price on that generic trading post admits a css whose limit
is different from 0, then ϕit,ε and ϕim,ε admit a css whose limit coincides with a Shapley-Shubik

allocation. If this is not the case ϕit,0 ≥ ϕit(a0) and ϕ
i
m,0 ≥ ϕii(a0) since ∀ε, ϕit,ε = biε

Qε+ε
Be+ε

− qiε ≥
−qiε and ϕim,ε = qiε

Be+ε
Qε+ε

−biε ≥ −biε, some of these inequalities holding strictly for some sequences
of actions11.

This drawback is common to all existence proofs derived from ε−games. But, since we work

with a generalized Nash equilibrium, it may also happen that the choice set αiε(a
−i) obtained,

say, at the limit does not coincide with αi(a−i) the choice set computed at the limit with the

Shapley-Shubik rule because the portfolio allocation matters. We face some, say, upper and

lower semi-continuity problem. In order to clarify this point, let us observe :

Lemma 6 Let a−iε ∈ A−i be a converging sequence of actions of the other players whose limit

is a−i0 ∈ A−i

(i) Let aiε ∈ αiε(a
−i
ε ). If the induced sequence πjε of asset prices admit a css whose limit is

different from 0 then
¡
aiε
¢
admits a css whose limit verifies ai0 ∈ αi(ai0).

(ii) If ai ∈ αi(a−i0 ) then there exists a sequence
¡
aiε
¢
with aiε ∈ αiε(a

−i
ε ) and with the property

that aiε → ai as ε→ 0.

Proof : In order to check (i), let us construct θiε the associated sequence of portfolio allocation. By
lemma 1 (and its proof), we can say that both aiε and θ

i
ε belongs to a compact set which is independently

from ε. So if (πj,ε) admits a css of limit πj,0, we can select another subsequence with the property that
θiε → θi0 and aiε → ai0. By remark 10 and since πj,0 6= 0, we can even say that θi0 = θi(ai0, a

−i
0 ). Now

remember ∀ε, aiε ∈ αiε(a
−i
ε ) which is given by equation 10. By pushing at the limit, we obviously verify

equation 6 so that ai0 ∈ αi(a−i0 ).
Let us now move to (ii).If ai0 ∈ int

¡
αi(a−i0 )

¢
, we know that :

∀s = 1, . . . , S,
LX
c=1

bics,0 < μis +
X
j∈J+

rsj

Ã
bi,0j

qij,0 +Q−ij,0

bij,0 +B−ij,0

− qij,0

!
+
X
j∈J0

rsj
¡
−qij,0

¢

with J0 =
©
j = 1, . . . , J : πj(a

i
0, a
−i
0 ) = 0

ª
and J+ it complement. Since ∀j ∈ J0, bi,0j

qij,0+Q
−i
j,0

bij,0+B
−i
j,0

≥ 0 and
the returns are non negative, we also have for any ε > 0

∀s = 1, . . . , S,
LX
c=1

bics,0 < μis +
X
j∈J+

rsj

Ã
bi,0j

qij,0 +Q−ij,0

bij,0 +B−ij,0

− qij,0

!
+
X
j∈J0

rsj

Ã
bi,0j

qij,0 +Q−ij,0 + ε

bij,0 +B−ij,0 + ε
− qij,0

!

11Take for instance bεi = ε, Bε
−i = 0, qεi =

ω
2
and Qε

−i = 0. One easely observes that pε → 0 and that
ϕti,ε →−ω

4
> ϕti(a

0) = −ω
2
.
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Now observe by remark 10 that ∀j ∈ J+ the sequence θij,ε(a
i
0, a
−i
ε ) → θij(a

i
0, a
−i
0 ) and since Q

−i
j,ε → Q−ij,0

and B−ij,ε → B−ij,0 we can find a ε0 small enough, such that

∀s = 1, . . . , S,
LX
c=1

bics,0 < μis +
JX
j=1

rsjθ
i
j,ε(a

i
ε, a
−i
ε )

i.e. such that ∀ε < ε0, ai0 ∈ αiε(a
−i
ε ). In other words, the sequence a

i
ε = 0 for ε ≥ ε0 and aiε = ai0 for

ε < ε0 has the property that ∀ε, aiε ∈ αiε(a
−i
ε ) and aiε → ai0. Let us now suppose that a

i
0 ∈ ∂

¡
αi(a−i0 )

¢
.

In this case let us choose ai1 ∈ int
¡
αi(a−i0 )

¢
. Since ∃ε1 > 0, ∀ε < ε1, ai1 ∈ αiε(a

−i
ε ), the segment

£
ai0, a

i
1

¤
for ε < ε1 either belongs to αiε(a

−i
ε ) or meets its boundary. We can therefore define

¡
aiε
¢
by aiε = 0 for

ε ≥ ε1 and for ε < ε1, aiε = ai0 if
£
ai0, a

i
1

¤
⊂ αiε(a

−i
ε ) or a

i
ε = argminai∈∂αiε(a

−i
ε )∩[ai0,ai1]

°°ai − ai0
°° else.

¥

At that point, it now becomes important to make sure that the ε−equilibrium sequence of

prices both converges and reaches a non-zero limit otherwise we can neither make sure that the

sequence of allocation converges to the Shapley-Shubik one, nor that the strategies obtained at

the limit belongs to the correspondence of choice of the different players.

This is the motivation of the next two subsections. In fact we will show that each commodity

and each asset price computed at an ε−NE is both bounded from above and from below by a

bound which is not only independent of ε but also of the choice of the ε−NE. These results are

obtained by constructing appropriate deviation from a ε − NE and by taking advantage from

the fact that they cannot be improving. Two lemmata which are presented in the appendix help

us to conclude.

5.2 Are the commodity prices bounded ?

We first begin with the commodity prices, say commodity cs, and show that pεcs admits a lower

bound. The intuition is quite simple12. It starts from the observation that such a bound exists

if nobody offers commodity cs. It therefore remains to consider a situation in which at least one

agent makes a strictly positive offer and to construct a deviation in which she offers less.

Lemma 7 There exists ccs > 0 with the property that the ε − NE price of each commodity

satisfies pεcs ≥ ccs

Proof : Let us start with an ε − NE profile of strategies a = (ai). If Qcs = 0 it is obvious that
pεcs =

Bcs+ε
ε ≥ 1. So let us assume that Qcs > 0. Two cases have to be considered :

Case 1 : ∃i0 ∈ I+q :=
©
i ∈ I : qics > 0

ª
for which bi0cs = 0.

Suppose that agent i0 decreases her offer q
i0
cs by ∆1 ≤ min

©
qi0cs, ε, 1

ª
. By doing so, she obtains less

money and more commodities cs in state s. Since ∆1 ≤ min
©
qi0cs, ε, 1

ª
and bi0cs = 0, we observe that

12The reader however notices that the method developed in this paper is quite different from the one used by
Dubey-Shubik (1978). Instead of increasing the bid of an agent we decreases her offer. By doing so we do not
have to care about the budget constraint, a problem which is, in our case, much more complicated because the
return of the assets enter into the story.
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(∆ms) = −pεcs
Q
−i0
cs +ε

Qcs+ε−∆1
∆1 ≥ −pεcs∆1 and

¡
∆xi0cs

¢
= ∆1. Her allocation after deviation therefore veri-

fies13
¡
xi0 ,mi0

¢
after

≥
¡
xi0 ,mi0

¢
before

+∆1 · (−pεcses + ecs). Since her utility is non-decreasing and her
initial allocation was given at equilibrium, the right-hand side commodity bundle cannot be improving.
By Lemma 10 and because ∆1 ≤ min

©
qiOcs , ε, 1

ª
, we can say that either k−pεcsesk > δ1 or mi0

s − pεcs < 0.

By Lemma 11, we also know that mi0
s > K, it follows that either pεcs > δ1 or pεcs ≥ K1.

Case 2 : ∀i ∈ I+q , b
i
cs > 0

If #I+q ≥ 2, ∃i0 ∈ I+q for which b
i0
cs

Bcs
≤ 1

2 . So let us decreases q
i0
cs by ∆2 ≤ min

©
qi0cs, ε, 2

ª
. As in case 1,

we have ∆ms ≥ −pεcs∆2 and, concerning commodity cs, we observe that14 ∆xcs =
B
−i0
cs +ε

Bcs+ε
∆2 ≥ 1

2∆2.
Thus ∆

¡
xi0 ,mi0

¢
≥ ∆2

2 · (−2pεcses + ecs) and we can conclude by the same argument as before that

either pεcs > δ2
2 or pεcs > K2

2 . Finally if #I+q = 1, let us again decreases the offer of i0 ∈ I+q by

∆3 ≤ min
©
qi0cs, ε, 1

ª
.Since Qcs = qi0cs, we observe that ∆x

i0
cs =

B
−i0
cs +ε

Bcs+ε
∆3 ≥ ε

Bcs+ε
∆3 and that15 ∆ms =

−pεcs ε

q
i0
cs+ε−∆3

∆3 ≥ −pεcs 2ε

q
i0
cs+ε

∆3, hence ∆
¡
xi0 ,mi0

¢
≥ ε∆3

Bcs+ε
· (−2 (pεcs)

2
es + ecs) and again by both

lemmata either pεcs >
q

δ3
2 or p

ε
cs >

q
K3

2

We can therefore conclude that pεcs ≥ ccs := min

½
1, δ1,K1,

δ2
2 ,

K2

2 ,
q

δ3
2 ,
q

K3

2

¾
¥

Let us now seek for an upper bound. The method is here closer to the one developed by

Dubey-Shubik (1978) and can be summarized as follows. We select an agent who offers less than

a half of the aggregate offer. If she has offered more then a half of her endowments, the price pεcs
is automatically bounded from above. If this is not the case, we construct a deviation in which

she increases her offer and obtain the required upper bound. Thus :

Lemma 8 There exists Ccs > 0 with the property that the ε − NE price of each commodity

satisfies pεcs ≤ Ccs

Proof : Let us consider an ε − NE profile of strategies a = (ai) and let us choose an agent i0 for

which q
i0
cs

Qcs
≤ 1

2 . If qi0cs >
ωics
2 we know (see the proof of lemma 1) that ∀i ∈ I, bics ≤ b̄is, so that

Bcs ≤ B̄cs. It follows that pεcs =
Bcs+ε
Qcs+ε

≤ B̄cs+ε
ωi
cs
2 +ε

≤ max
n
1, 2 B̄cs

ωics

o
. If qi0cs ≤

ωics
2 , let us increase q

i0
cs by

∆4 = min
n
ε,

ωics
2 , 2 (pεcs)

−1
o
. We obtain

¡
∆xi0cs

¢
= −B

−i0
cs +ε

Bcs+ε
∆4 ≥ −∆4 and

¡
∆mi0

s

¢
= pεcs

Q
−i0
cs +ε

Qcs+ε+∆4
∆4.

Since q
i0
cs

Qcs
≤ 1

2 and ∆4 ≤ ε, we even have16
¡
∆mi0

s

¢
≥ 1

2p
ε
cs∆4. Hence ∆

¡
xi0 ,mi0

¢
≥ pεcs∆4

2 ·(− 2
pεcs

ecs+es)

and by lemmata 10 and 11, we can assert that either pεcs < 2
δ4
or pεcs < 2

K4
. Thus pεcs ≤ Ccs :=

max
n
1, 2 B̄cs

ωics
, 2δ4 ,

2
K4

o
¥

13We denote by ecs a vector whose components are all 0 except for commodity cs where the component is set
to 1. The vector es is defined in the same way but it concerns the holding in money in state s.
14Since

b
i0
cs

Bcs
≤ 1

2
we can say that B−i0cs ≥ Bcs

2
. It follows that

B
−i0
cs

+ε

Bcs+ε
∆2 ≥

Bcs
2
+ε

Bcs+ε
∆2 ≥

1
2
(Bcs+2ε)

Bcs+2ε
∆2 =

1
2
∆2.

15Let us first observe that ∆ms ≥ −pεcs 2ε

q
i0
cs
+2ε−∆3

∆3 because −ε
q
i0
cs
+ε
decreases with ε. Moreover since ∆3 ≤ ε,

it follows ∆ms ≥ −pεcs 2ε

q
i0
cs
+ε

∆3

16Observe that
q
i0
cs

Qcs
≤ 1

2 implies that
Q
−i0
cs
Qcs

≥ 1
2 . It follows that ∆mi0

s ≥ pγcs
1
2
Qcs+ε

Qcs+ε+∆4
∆4. Now remember that

∆4 ≤ ε. We can therefore say that ∆mi0
s ≥ pεcs

1
2
Qcs+ε

Qcs+2ε
∆4 =

1
2
pεcs∆4.
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5.3 The asset prices are also bounded

Let us first study the existence of lower bound for the asset prices. By chance, we can obtain

this bound by applying the same method as in lemma 7. We however has to take care to the

asset structure since any decrease of an offers for assets leads to a transfer of money from the

present to the future.

Corollary 1 There exists kj > 0 with the property that the ε−NE price of each asset satisfies

πεj ≥ kj

Proof : Let us keep in mind the proof of lemma 7 and let us introduce a decrease of the agent i00s
offer in asset j. Hence any change in

¡
∆xi0cs

¢
can now be viewed as a change

¡
∆θi0j

¢
of her holding

in asset j. Since θi0j increases and ∀s, j rs,j ≥ 0, she does not go bankrupt after deviation. So let

us denote by (∆m1) the change in her final holding in money in each future state. Since the asset

structure is non-trivial (i.e ∀j, ∃s, rs,j > 0), ∃s(j) := argmins=1,...,S {rsj : rsj > 0} , we can say that
(∆m1) ≥ rs(j),j

¡
∆θi0j

¢
· es(j). So by making the right substitution, we can conclude that πεj ≥ kj =

rs(j),j min

½
1

rs(j),j
, δ01,K

0
1,

δ02
2 ,

K0
2

2 ,
q

δ03
2 ,
q

K0
3

2

¾
¥

A similar argument does not work for the construction of an upper bound since the proof

lemma 8 heavily relies on the existence of initial endowments and this is not the case for financial

assets. An other method is therefore required.

So let us observe that the price of, say, asset j is bounded from above if all bids are zero.

We can therefore restrict our attention to a situation in which at least one agent posts a bid

and we can look at the consequences of a decrease of this quantity. By doing so she initiates

a transfer of money from the future to the present, but she also takes the risk of running into

bankruptcy. This is why we compute a more complicated deviation in which her bids on the

future commodity market also adjust in order to prevent this bad even. This is made possible by

the secured lending assumption which guaranties that any player who makes a bid on an asset

trading post always owns some money before trading commodities. This is why if she initially

spends all her money in a given state, she is always able to decrease one of her bids. But, by

doing so, we obtain an upper bound which depends on the commodity prices which are known

to be bounded. We can therefore say that :

Lemma 9 There exists Kj > 0 with the property that the ε − NE price of each commodity

satisfies πεj ≤ Kj

Proof : If Bj = 0 the result is obvious since πεj =
ε

Qj+ε
≤ 1. So let us assume that Bj > 0. Two cases

must be considerate :
Case 1 : ∃i0 ∈ I+b :=

©
i ∈ I : bij > 0

ª
, qi0j = 0

Let us assume that agent i0 decreases her bids b
i0
j by ∆5 ≤ min

©
bi0j , ε

ª
. Since qi0j = 0, we observe that

(∆m0) = ∆5 and
¡
∆θi0j

¢
= − 1

πεj

B
−i0
j +ε

Bj+ε−∆5
∆5 ≥ − 1

πεj
∆5. Now define S+ = {s ∈ S : rsj > 0} and construct
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Sb+ :=
n
s ∈ S+ :

PL
c=1 b

i0
cs = μi0s +

PJ
j=1 rsjθ

i0
j

o
and Su+ := S+\Sb+ the sets of states in which the cash

in advance constraint is respectively binding and unbinding. In the last case, there is no bankruptcy
problem as long as ∆5 is smaller than mins∈Su+

n
πεj
rsj

³PL
c=1 b

i0
cs − μi0s −

PJ
j=1 rsjθ

i0
j

´o
, hence ∀s ∈ Su+,

(∆ms) ≥ − rsj
πεj
∆5. But for s ∈ Sb+, bankruptcy occurs after this deviation. But the secured lending

assumption implies that μi0s +
PJ

j=1 rsjθ
i0
j > 0, so that ∀s ∈ Sb+, ∃c(s), bi0c(s),s > 0. By choosing ∆5

smaller than mins∈Sb+

n
bi0c(s),s

o
×min

½
πεj

max
s∈Sb

+
{rsj} , 1

¾
, we can decrease bi0c(s),s by

³
∆bi0c(s),s

´
=

rsj
πεj
∆5 in

order to prevent bankruptcy. As a consequence ∀s ∈ Sb+, (∆ms) =
Q
−i0
c(s),s

+ε

Qc(s),s+ε
rsj
πεj
∆5 ≥ 0 and

¡
∆xc(s),s

¢
=

− 1
pε
c(s),s

B
−i0
c(s),s

+ε

Bc(s),s+ε−(∆bc(s),s)

¡
∆bc(s),s

¢
≥ − 1

pε
c(s),s

rsj
πεj
∆5. To sum up, we have :

∆
¡
xi0 ,mi0

¢
≥ ∆5 ·

⎛⎝−
⎛⎝X
s∈Su+

rsj
πεj

es +
X
s∈Sb+

1

pεc(s),s

rsj
πεj

ec(s),s

⎞⎠+ e0

⎞⎠
By Lemmata 10, 11 and 7, we know that either :

• 1
πεj

rP
s∈Su+

r2sj +
P

s∈Sb+

³
rsj

pε
c(s),s

´2
> δ5 ⇒ πεj <

1
δ5

µP
s∈Su+

r2sj +
P

s∈Sb+

³
rsj

cc(s),s

´2¶ 1
2

.

• ∃s ∈ Su+, m
i0
s −

rsj
πεj

< 0⇒ rsj
πεj

> K5 ⇒ πεj <
rsj
K5

• ∃s ∈ Sb+, x
i0 − 1

pε
c(s),s

rsj
πεj

< 0⇒ πεj <
1

cc(s),s

rsj
K5

So let us define K1
j := max

(
1
δ5

µP
s∈Su+

r2sj +
P

s∈Sb+

³
rsj

cc(s),s

´2¶ 1
2

,
³
rsj
K5

´
s∈Su+

,
³

1
cc(s),s

rsj
K5

´
s∈Su+

)
Case 2 : ∀i ∈ I+b :=

©
i ∈ I : bij > 0

ª
, qij > 0

If #I+b ≥ 2, ∃i0 ∈ I+b with the property that
q
i0
j

Qj
≤ 1

2 . So let us decrease her bid bi0j by ∆6 ≤

min
©
bi0j , ε

ª
. It follows that17 ∆m0 =

Q
−i0
j +ε

Qj+ε
∆6 ≥ 1

2∆6 and ∆θ
i0
j ≥ − 1

πεj
∆6. By reproducing a similar

argument as in case 1 in order to escape bankruptcy, we finally obtain :

∆
¡
xi0 ,mi0

¢
≥ ∆6

2
·

⎛⎝−2
⎛⎝X
s∈Su+

rsj
πεj

es +
X
s∈Sb+

1

pεc(s),s

rsj
πεj

ec(s),s

⎞⎠+ e0

⎞⎠
and construct a new boundK2

j = max

(
2
δ6

µP
s∈Su+

r2sj +
P

s∈Sb+

³
rsj

cc(s),s

´2¶ 1
2

,
³
2rsj
K6

´
s∈Su+

,
³

2
cc(s),s

rsj
K6

´
s∈Su+

)
.

Let #I+b = 1. If we decrease the bid of i0 ∈ I+b by ∆7 ≤ min
©
bi0j , ε, 1

ª
, we obtain (∆m0) =

Q
−i0
j +ε

Qj+ε
∆7 ≥ ε

Qj+ε
∆7 and18

¡
∆θi0j

¢
= − 1

πεj
· ε

b
i0
j +ε−∆5

∆7 ≥ − 1
πεj
· 2ε

b
i0
j +ε

∆7. By converting this decrease

in the asset holding into a change in future money holding by taking care to bankruptcy, we obtain after
a tedious computation that :

17Since
q
i0
j

Qj
≤ 1

2
we can say that Q−i0j ≥ Qj

2
. It follows that

Q
−i0
j +ε

Qj+ε
∆ ≥

Qj
2
+ε

Qj+ε
≥

1
2
(Qj+2ε)

Qj+2ε
.

18Let us first observe that ∆θi0j ≥ − 1
π
γ
j

2ε

b
i0
j +2ε−∆5

∆7 because −ε
b
i0
j +ε

decreases with ε. Moreover since ∆7 ≤ ε,

it follows ∆ms ≥ − 1
πγj

2ε

b
i0
j +ε

∆7
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∆
¡
xi0 ,mi0

¢
≥ ε∆7
(Qj + ε)

·

⎛⎝−2
⎛⎝X
s∈Su+

rsj¡
πεj
¢2 es + X

s∈Sb+

1

pεc(s),s

rsj¡
πεj
¢2 ec(s),s

⎞⎠+ e0

⎞⎠
and construct K3

j = max

(q
2
δ7

µP
s∈Su+

r2sj +
P

s∈Sb+

³
rsj

cc(s),s

´2¶ 1
4

,
³q

2rsj
K7

´
s∈Su+

,
³q

2
cc(s),s

rsj
K7

´
s∈Su+

)
We can therefore conclude πεj ≤ Kj = max

©
K1
j ,K

2
j ,K

3
j

ª
¥

5.4 The main result

It now simply remains to put together the various remarks and lemmata of this section in order

to prove that :

Theorem 2 Every Shapley-Shubik game with financial markets admits at least one nice equi-
librium

Proof : Let (ãε) be a css of ε−NE equilibrium strategies whose limit is (ã0). By lemmata 7 and 8, the

associated sequence of commodity prices p̃ε admits a css of limit p̃0 6= 0. By remark 10 and the continuity
of the utility functions, it follows that ∀i = 1, . . . , I, Ui

¡
ϕiε (ãε)

¢
→
ε→0

Ui
¡
ϕi (ã0)

¢
(for a ccs). Moreover,

by corollary 1 and lemma 9, the asset price sequence π̃ε also admits a css of limit π̃0 6= 0. Hence by

(i) of lemma 6 we know that ãi0 ∈ αi(ã−i0 ). It now remains to verify that no agent has an incentive to

deviate. So let us assume ∃i, ∃ai ∈ αi(ã−i0 ), Ui
¡
ϕi
¡
ai, ã−i0

¢¢
> Ui

¡
ϕi (ã0)

¢
. By (ii) of lemma 6, ∃

¡
aiε
¢

with aiε ∈ αiε(ã
−i
ε ) and aiε →

ε→0
ai0. Since, at least for ε < 1, the allocations belong to a compact set (see

proof of lemma 11), ϕε
¡
aiε, ã

−i
ε

¢
→
ε→0

ϕ0 (for a css). So, by remark 10 we know that ϕ
i
0 ≥ ϕi

¡
ai, ã−i0

¢
and since the utility is non decreasing we have Ui

¡
ϕi0
¢
> Ui

¡
ϕi (ã0)

¢
. By construction of the different

ccs that we have introduced up to now and the continuity of the utility, we finally observe that ∃λ > 0,

for some ε < λ, ∃aiε ∈ αiε(ã
−i
ε ), Ui

¡
ϕiε
¡
aiε, ã

−i
ε

¢¢
> Ui

¡
ϕiε (ãε)

¢
. But this contradict the fact that ãε is a

ε−NE.

¥

6 Conclusion

In this paper we have extended the Shapley-Shubik model to a two period economy with financial

markets. In fact, we have considered a two period and S-state economy in which the agents have

the opportunity to buy in the first period a certain number of numéraire assets in order to

reallocate their purchasing power between both the two periods and the future S states. In this

numéraire asset economy à la Geanakoplos-Polemarchakis (1986), we simply replace, on each

market, the standard walrasian market mechanism by the one depicted by Shapley & Shubik

(1977). Since in this last case, the agents make their choice under cash-in-advance constraints,

the financial asset give them the opportunity, as usually in a GEI economy, to reallocate partially

these constraints across periods and states. Within this context, we were mainly concern by the
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existence issue and especially the existence on nice equilibria, i.e. equilibria where each trading

post is active.

This is why several topics concerning these equilibria remain of our agenda. Concerning the

existence issue, one can, for instance, try to introduce real assets instead or numéraire ones.

This clearly modifies the nature of the equilibrium because assets do not, in this case, contribute

to a reorganization of the different cash-in-advance constraints. It modifies the amount of

commodities that an agent owns in the second period and therefore changes her capacity to

offer commodities. If one maintains, in this case, the assumption that the agents make their

choice under some cash-in-advance constraints, the existence result could be obtained without

a secured lending assumption since each player cannot buy to much assets due to her first

period cash-in-advance constraint and sell to much asset due to her limited ability to buy back

commodities in the second period.

But we must concede that the cash-in-advance and/or the secured leading constraints exclude

the possibility of arbitrary short sells on the financial markets. From that point of view, it is

quite clear that the question of the asymptotic convergence toward a walrasian GEI economy as

the number of players increases leads to negative conclusion. As noted by Amir, Sahi, Shubik

& Yao (1990), this simply follows from the idea that liquidity constraints, who have no role to

play in general equilibrium play a fundamental role in this kind of strategic market games. In

the same vein, and following in some sense Koutougeras (2003), we may even conjecture that

arbitrage opportunity remains on the financial markets, even at the limit, since the secured

lending assumption avoid unlimited short sells. But a contrario, if these constrains are not

binding for enough agents one may expect that the arbitrage opportunities disappear as the

economy becomes large.

Finally, one can tries to look at a model in which the cash-in-advance and/or the secured

leading constraints can be excluded. In the first case it can be interesting to move to a strategic

market game with fiat money in the spirit of Peck, Shell & Spear (1992). In this setting,

one typically considers a strategic market game with financial asset (instead of nominal or

real assets) without any cash-in-advance constraint. But the question of existence becomes

again an open issue. In the second case, one can try to substitute to the secured lending

constraint a mechanisms in which default is allowed and some punishments are implemented

(see Dubey Geanakoplos & Shubik 2005). But in this last case, the fact that the agents are able

to manipulates this new constraints remains again an open issue.
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APPENDIX

Lemma 10 Let U : R(L+1)S+1+ → R be a continuous increasing and quasi-concave function, let ei
be the ith vector of the canonical basis of R(L+1)S+1, and let (x̄, m̄) ∈ R(L+1)S+1+ . In this case ∃δ >
0 with the property that if kzk ≤ δ and (x̄, m̄)+ z ≥ 0 then ∀λ ∈ ]0, 1[, ui ((x̄, m̄) + λ (z + ei)) >

ui (x̄, m̄)

Proof : Let Bρ((x̄, m̄)) be a closed ball around (x̄, m̄) with finite radius ρ and let us construct

D =
n
x ∈ R(L+1)S+1+ : k(x,m)k ≤ k(x̄, m̄)k+ ρ

o
Observe that (i) ∆ := miny∈Bρ((x̄,m̄)) (U(y + ei)− U(y)) > 0 because U is increasing and (ii) the restric-

tion of the utility function to the compact set D is, by Heine’s theorem, a uniformly continuous function.

It follows by (ii) that ∀ε > 0, ∃δ > 0 with the property that ∀y ∈ Bδ((x̄, m̄))∩D, |U((x̄, m̄))− U(y)| < ε.

Now set ε = ∆ and choose, if necessary, ρ ≥ δ. Because U is increasing and uniformly continuous

on D, we can assert that ∀y ∈ Bδ((x̄, m̄)) ∩ D, U((x̄, m̄)) < U(y + ei). But y can be written as

y := (x̄, m̄) + z with kzk < δ and (x̄, m̄) + z ≥ 0. It follows that if kzk ≤ δ and (x̄, m̄) + z ≥ 0 then
U ((x̄, m̄) + z + ei) > U((x̄, m̄)). Finally, observe that U is quasi-concave, and conclude that ∀λ ∈ ]0, 1[,
U ((x̄, m̄) + λ (z + ei)) > U (x̄, m̄)).

¥

Lemma 11 Under the boundary assumption, there exists K > 0 with the property that for every

agent and every allocation (xi,mi) of agent i which is both reachable and individually rational

we have (xi,mi)À Ke with e := (1, . . . , 1) ∈ R(L+1)S+1+

Proof : Let us first observe that the feasible allocation set in a ε− game is given by

Fε :=

⎧⎪⎪⎨⎪⎪⎩
(xi,mi)Ii=1 ∈ R

((L+1)S+1)I
+ : ∀cs

Pn
i=1

³
xiε,cs(a)− ωics

´
= ε(Bcs−Qcs)

Bcs+ε
,Pn

i=1

¡
mi
ε,0(a)− μi0

¢
=
PJ

j=1
ε(Qj−Bj)
Qj+ε

and ∀s = 1, . . . , S
Pn

i=1

¡
mi
ε,s(a)− μis

¢
=
PJ

j=1 rs,j

³
ε(Bj−Qj)
Bj+ε

´
+
PL

c=1
ε(Qcs−Bcs)

Qcs+ε

⎫⎪⎪⎬⎪⎪⎭
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But for ε < 1 and for each item of trade we have ε(B−Q)
B+ε ≤ 1 and ε(Q−B)

Q+ε ≤ 1. We can therefore assert
that the set of feasible allocations is included in :

Fmax :=

(
(xi,mi)Ii=1 ∈ R

((L+1)S+1)I
+ : ∀cs

Pn
i=1

¡
xics − ωics

¢
≤ 1,

Pn
i=1

¡
mi
0 − μi0

¢
≤ J

and ∀s = 1, . . . , S
Pn

i=1

¡
mi
s − μis

¢
≤ L+

PJ
j=1 rs,j

)

which is a non-empty compact set. Now let us denote by F i
max the projection of Fmax on agent i’s

consumption set. Since the set Ri of individually rational allocation is closed and belong to R(L+1)S+1++ .
It follows that ∃Ki

c,s > 0 with the property that

Ki
c,s = min

(x,m)∈Ri∩F i
max

k(x,m)− (0, . . . , 0, xc,s, 0, . . . , 0)k > 0

Since the same argument not only holds if we replace xc,s by ms and can also be replicated for each

agent. We can set K = minc=1,...,L,s=1,...,S,i∈I
©
Ki
cs,K

i
s

ª
and conclude.

¥
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